
DDD Hamburg
Usergroup

#4



Want To Contribute?

https://github.com/DDD-Hamburg/participate

Please To Contribute!



Employing DDD
In Legacy Systems

How To Escape The Big Ball Of Mud



About Me

https://github.com/Partyschaum

Hauke Stange
Software Developer

https://twitter.com/EinJungeAusKiel

https://www.xing.com/profile/Hauke_Stange



How We Got Here
● Attended a reading group for Vernon’s “Red Book”

● Got excited by the ideas of DDD

● Wanted to start implementing DDD

● Got bogged down by reality



How We Got Here

● Googled “start ddd legacy system”

● Found “Getting Started With DDD When Surrounded By 

Legacy Systems”

● Looked for an opportunity to dive into this topic

● Prepared this talk



Requirements for DDD

● Clean Bounded Context

● A model “well suited to the problem at hand”

● A basic set of DDD principles and techniques



What We Have

● Tangled legacy systems

● An implicit but established model

● Changes on the model aren’t possible without effort



What Can We Do?

Just continue…

● Slows development over time

● Changes could (and will) break your system

● Just adding new models leads to conflicting rules and 

concepts in your code base



What Can We Do?

High risk legacy replacement project...

...without a serious understanding of DDD principles and 

techniques you’ll (very likely) end up

with a legacy system again!



But How to Start 
Then???



“Introducing a difficult new set 
of development practices and 
techniques is best done 
incrementally, as in a pilot 
project.”



Bubble Context

“A ‘bubble’ is a small bounded context established using 

an Anticorruption Layer (ACL) for the purpose of a 

particular development effort”



Bubble Context

“The bubble isolates [..] so the team can evolve a model 

that addresses the chosen area, relatively unconstrained by 

the concepts of the legacy systems.”



Getting Started

Technologies

● React / Redux

● ELK Stack

● Apache Kafka

● AWS Lambda

Patterns / Concepts

● CQRS & Event Sourcing

● Reactive Architecture

● Microservices

● DDD



What have all those 
things in common?



You absolutely need a 
proper use case to 
justify their application!



“To get started, you need to 
choose an important, yet 
modest-sized, business 
related problem with some 
intricacy.”



“Business related 
problem with some 
intricacy”

Legacy System

Defend your 
domain against all 
odds!

Isolation is king!



Bubble Context

Legacy System



The Translation Agency
ACL in short

English ↔ 英語

Translates concepts from outside the

context to the language spoken inside



But...



Don’t we do this all the 
time?



Mapping things from 
one to another?



Adapters
Bridges
Facades



Yes… But no...



“...translates concepts 
to the language 
spoken inside…”



Problem With Mapping
User

1. A person who uses or operates something

2. A person who exploits others

3. The continued use or enjoyment of a right



Translate Concepts

User

● Customer
● Vendor

● Tenant
● Landlord

● Bidder
● Offerer

Shop

Real Estate

Auction



Translate Concepts

Mapping Things

● Concept leakage

● Technical solution

⇨ Yet another layer of abstraction

Translate Concepts

● Intention revealing

● Solution matches context

⇨ Establish a ubiquitous language



Translate Concepts

“An isolating layer to provide clients with functionality in terms of their own 

domain model. [..] Internally, the layer translates in both directions as necessary 

between the [..] models.”

Evans, Domain Driven Design, p.365



Short Recap

● We need a small business related problem 

● Then model it in a bubble context

● Implement an ACL to protect it from the legacy system



Anatomy of an ACL

● Requests the API of the legacy system

● Translates concepts between bubble and legacy system

● One ACL may talk to many legacy systems



Anatomy of an ACL



The Repository is the 
“DDD building block 
used to represent 
access to pre-existing 
objects”.



The ACL-backed Repository



The ACL-backed Repository

● Illusion of own datastore via repository interface

● Dependent on upstream context

● Queries the legacy system

● Translates concepts

● Enables the Bubble Context



Bubble Context

● Leverages a new set of DDD development principles and techniques

● Does not require a big commitment

● Can serve as pilot project

● If the Bubble bursts, the functionality remains

● Design freedom is the point of the Bubble

Key Benefits



The Bubble Context 
enables DDD when 
surrounded by legacy 
systems!



Bubble Context

● Translation can and will be tricky

● ACL is significant piece of software on its own right

● Any additional information needed from legacy context 

has to be worked out

Drawbacks



Bubble Context

● Allows no data to be used that isn’t available upstream

● New information needs to be added to the legacy system

● New information needs to be translated back to the 

Bubble increasing the dependencies

Drawbacks



Pitfalls

● Weak context boundaries

● Planning and coordination of the development efforts

● Adding data is a modelling job

● Only bring in data you use

● No business logic in the ACL



Directions

● Cut the umbilical cord!

● Expose Legacy Assets As Services



“The Autonomous 
Bubble [has] the 
ability to run its 
software [..] cut off 
from other systems.”



Cut The Umbilical



Enables evolution of 
the model since the 
context is more 
loosely coupled.



The ACL takes on 
responsibility of 
synchronization 
between contexts.



Low-Tech Synchronizing ACL
“The Nightly Batch Script”



Low-Tech Synchronizing ACL

● Often implemented as some kind of worker

or “Nightly Batch Script”

● Freshness of data depends on

how often the worker is run



Low-Tech Synchronizing ACL

● Isolate data copying and translation for your context in 

modules

● Don’t put “once-per-day” business logic into the ACL

Pitfalls



Stylish Synchronizing ACL
Messaging And Domain Events



Stylish Synchronizing ACL



Stylish Synchronizing ACL

● Updates the system while it’s being used

● Integrates nicely with event driven architectural patterns



“Any mechanism that can 
update a data store in one 
context based on data in 
another [..] and can do this 
asynchronously [..] could be 
used to implement a 
Synchronizing ACL.”



Things To Remember
From This Talk

● Bubble Context enables DDD

● Anticorruption Layer enables Bubble Context

● Translation is not mapping things



References & Related Sources

Getting Started With DDD When Surrounded By Legacy Systems (Eric Evans):
http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf

Domain Driven Design (Eric Evans):
https://www.safaribooksonline.com/library/view/domain-driven-design-tackling/0321125215/

Implementing Domain Driven Design (Vaughn Vernon):
https://www.safaribooksonline.com/library/view/implementing-domain-driven-design/9780133039900/

Refactoring code that accesses external services (Martin Fowler):
http://www.martinfowler.com/articles/refactoring-external-service.html is an nice example how to refactor service access into an ACL

Architecture - The Lost Years (Uncle Bob):
https://www.youtube.com/watch?v=WpkDN78P884 explains why context matters (and the framework must not be important)

http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf
http://domainlanguage.com/wp-content/uploads/2016/04/GettingStartedWithDDDWhenSurroundedByLegacySystemsV1.pdf
https://www.safaribooksonline.com/library/view/domain-driven-design-tackling/0321125215/
https://www.safaribooksonline.com/library/view/domain-driven-design-tackling/0321125215/
https://www.safaribooksonline.com/library/view/implementing-domain-driven-design/9780133039900/
https://www.safaribooksonline.com/library/view/implementing-domain-driven-design/9780133039900/
http://www.martinfowler.com/articles/refactoring-external-service.html
http://www.martinfowler.com/articles/refactoring-external-service.html
https://www.youtube.com/watch?v=WpkDN78P884
https://www.youtube.com/watch?v=WpkDN78P884

