They're...
Functional!
Efficient!!
Persistent data structures!!!

@AnjanaVakil
I'Con 2016

Fall 2, 2015

Functional Programming
rocks!

Immutability
rocks!

/Nobody sits like this rock sits. \
You rock, rock.
The rock just sits, and is.

You show us how to just sit here, and that's what we need.
-- | ® Huckabees (200@

lllustration by Marco Piazza

In the land of mutabillity...

foo (@11(2]|3(4]|5

In the land of mutabillity...

foo (@|1(2]13(4]|5

Overhead & bugs! (

In the land of immutabillity...

foo (@112 |3(4|5]|6

In the land of immutabillity...

foo (@112 |3(4|5]|6

Copying wastes time/space! :(

There must be a better way...

Persistent Data Structures!

Old versions never change :)
(they just sit, and are)

New versions created efficiently
D

Magic?!

Reuse unchanged parts!

Linked lists!

foo |©

Linked lists!

foo |©

Linked lists!

foo |©

Trees!

lllustration by Marco Piazza

Trees!

-

-

Well, actually,
tries...

~

lllustration by Marco Piazza

Trees!

-~

_

Well, actually,
tries...

~

Y,

lllustration by Marco Piazza

Trees!

-~

_

Well, actually,
tries...

~

|

Oops, sorry [=

No weII-actuaIIy’s
;; -.'."-=.____L R l.

lllustration by Marco Piazza

Trees!

Trees!

Trees!

Trees!

Trees!

fo0

Trees! Path copying!!

fo0

Trees! Path copying!!

fo0

Trees! Path copying!!

fo0

Trees! Path copying!!

fo0

Trees! Path copying!!

WOO foo

Trees! Path copying!! Structural sharing!!!

WOO foo

Trees! Path copying!! Structural sharing!!!

WOO foo

Immutabllity ==
Copying ==
Sharing == ;

JavaScript!

Mori Immutable.js
https://swannodette.github.io/mori https://facebook.github.io/immutable-js
var f = mori.vector(1,2); var f = Immutable.List.of(1,2);
var w = mori.conj(f, 3); var w = f.push(3);

e ClojureScript port e JS through & through

e Public methods

e Functional API _ _
e A bit smaller than Mori

e Fast

Libraries for other languages too!

...or just use a functional language! :)
(say, Clojure)

Further Reading

“Understanding Clojure’s Persistent Vectors”

Jean Niklas L'orange
http://hypirion.com/musings/understanding-persistent-vector-pt-1

“Ideal Hash Trees”
Phil Bagwell

http://lampwww.epfl.ch/papers/idealhashtrees.pdf

Thanks for listening!
I'm @AnjanaVakil

Huge thanks to:

Recurse Center alums
Sal Becker (F2'15)
I'Con organizers

