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Functional Programming
rocks!



Immutability
rocks!



/Nobody sits like this rock sits. \
You rock, rock.
The rock just sits, and is.

You show us how to just sit here, and that's what we need.
-- | ® Huckabees (200@

lllustration by Marco Piazza




In the land of mutabillity...
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Overhead & bugs! (



In the land of immutabillity...
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Copying wastes time/space! :(



There must be a better way...



Persistent Data Structures!



Old versions never change :)
(they just sit, and are)



New versions created efficiently
D



Magic?!



Reuse unchanged parts!



Linked lists!
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Trees!
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Trees!
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Trees!




Trees!




Trees!




Trees!




Trees!
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Trees! Path copying!!
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Trees! Path copying!!

WOO foo




Trees! Path copying!! Structural sharing!!!

WOO foo




Trees! Path copying!! Structural sharing!!!

WOO foo




Immutabllity ==
Copying ==
Sharing == ;



JavaScript!

Mori Immutable.js
https://swannodette.github.io/mori https://facebook.github.io/immutable-js
var f = mori.vector(1,2); var f = Immutable.List.of(1,2);
var w = mori.conj(f, 3); var w = f.push(3);

e ClojureScript port e JS through & through

e Public methods

e Functional API _ _
e A bit smaller than Mori

e Fast



Libraries for other languages too!



...or just use a functional language! :)
(say, Clojure)



Further Reading

“Understanding Clojure’s Persistent Vectors”

Jean Niklas L'orange
http://hypirion.com/musings/understanding-persistent-vector-pt-1

“Ideal Hash Trees”
Phil Bagwell

http://lampwww.epfl.ch/papers/idealhashtrees.pdf




Thanks for listening!
I'm @AnjanaVakil
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