
expect("💩").length
.toBe(1)

No. It’s not just strings

• "".length == 0

• "a".length == 1

• "ä".length == 1

Where’s the problem?

Others (PHP) already fail
here

• strlen("") == 0

• strlen("a") == 1

• strlen("ä") == 2

I cheated - my editor was in UTF-8 mode. I can also make strlen("ä") be 1. (or 3 or 4)

Ah. But PHP sucks! Let’s
use Ruby.

Yes. It’s unfair to use an outdated version of Ruby. 1.9 has (generally) fixed this.

Whatever. We’re doing
JS and JS does it right.

Right?

What gives?

You know. Historical
reasons

What is a string?

• Compound type

• Array of characters

• C says char*

• char is defined as the “smallest addressable
unit that can contain basic character set”.
Integer type. Might be signed or unsigned

• Ends up being a byte

Traditional string APIs

• Length of a string? count bytes until the
end (\0) and divide by sizeof(char)

• Accessing the n-th character? Add
n*sizeof(char) to the pointer

• Remember: sizeof(char) usually is 1 and
guess how people “optimized”

Interacting with the
world

• Just dump the contents of the memory into
a file

• Read back the same contents and put it in
memory

• Problem solved.

• Until you need to do this across machines

Interoperability

• char is inherently implementation
dependent

• So is by definition the file you dump your
char* into

• Can’t move files between machines

ASCII

• “American Standard Code for Information
Interchange”

• Published 1963

• Uses 7 bits per character (circumventing
the signedness-issue)

• Perfectly fine for what everybody is using
(English)

But I need ümläüte

• Machines were used where people speak
strange languages (i.e. not English)

• ASCII is 7bit. Adding a bit gives us another
127 characters!

• Depending on your country, these upper 127
characters had different meanings

• No problem as texts usually don’t leave their
country

remember “chcp 850”?

Thüs wäs nöt pюssїҌlҿ!

I apologize to all Russians for butchering their script.

Then the Internet
happened

Unicode 1.0

• 16 bits per character

• Published in 1991, revised in 1992

• Jumped on by everybody who wanted “to
do it right”

• APIs were made Unicode compliant by
extending the size of a character to 16 bits.
Algorithms stayed the same

65K characters are
enough for everybody

640K are enough for
everybody

Still just dumping
memory

• wchar is 16 bits

• Endianness? See if we care!

• To save to a file: Dump memory contents.

• To load from a file: Read file into memory

• Note they didn’t dare extending char to 16
bits

• Let’s call this “Unicode”

16 bits everywhere

• Windows API (XxxxXxxW uses wchar
which is 16 bit wide)

• Java uses 16 bits

• Objective C uses 16 bits

• And of course, JavaScript uses 16 bits

• C and by extension Unix stayed away from
this.

That’s perfect. By using
16 bit characters, we

can store all of Unicode!

It didn’t work out so
well

• By just dumping memory, there’s no way to
know how to read it back

• Heuristics suck (try typing “Bush hid the
facts” in Windows Notepad, saving,
reloading)

• Most protocols on the internet allow to
specify a character set

BOM

No. Really

• Implementations lie.

• Legacy software had (well. has.) huge
problems with wide characters

• Issues with updating old file formats

• 65K characters are not nearly enough

We learned

• UTF has happened

• specifically UTF-8 happened

• Unicode 2.0 happened

• Programming environments learned

Unicode 2.0+

• Theoretically unlimited code space

• Doesn’t talk about bits any more

• The terminology is code point.

• Currently 1.1M code points

• The old characters (0000 - FFFF) are on
the BMP

Unicode Transformation
Format

• Specifies how to store Unicode on disk

• Specifies exact byte encoding for every
Unicode code point

• Available for 8-, 16- and 32 bit encodings
per code point

• Not every byte sequence is a valid UTF
byte sequence (finally!)

UTF-8

• Uses an 8bit encoding to store code points

• Is the same as ASCII for whatever’s in ASCII

• Uses multiple bytes to encode code points
outside of ASCII

• The old algorithms don’t work any more

UTF-16

• Combines the worst of both worlds

• Uses 16bit to encode a code point

• Uses multiple of 16bits to encode a code point
outside of the BMP

• Wastes memory for ASCII, has byte-ordering-
issues and still breaks the old algorithms.

• Is the only way for these 16bit bandwagon
jumpers to support Unicode 2.0 and later

UTF-32

• 4 bytes per character

• Byte ordering issues

• Still breaking the old algorithms due to
combining marks

Strings are not bytes

• A string is a sequence of characters

• A byte array is a sequence of bytes

• Both are incompatible with each other

• You can encode a string into a byte array

• You can decode a byte array into a string

Which brings us back to
JS

• Lives back in 1996

• Strings specified as being stored in UCS-2
(Fixed 16 bits per character)

• Leaks its implementation in the API

• Doesn’t know about Unicode 2.0

Browsers cheat

• Browsers of course support Unicode 2.0

• We need to display these piles of poo!

• Browsers expose Unicode strings to JS
using UTF-16

• The JS API doesn’t know about UTF-16 (or
Unicode 2.0)

String methods are leaky

• String.length returns mish-mash of byte
length and character length for strings
outside the BMP

• substr() can break strings

• charAt() can return non-existing code-
points

• and let’s not talk about to*Case

Samples

That D8 3D is half of the UTF-16 encoding of U+1F4A9
which is 3d d8 a9 dc

Et tu RegEx?

• Character classes don’t
work right

• Counting characters
doesn’t work right

• Can break strings

Intermission: Digraphs

• ä is not the same as ä

• ä can be “LATIN SMALL LETTER A WITH
DIAERESIS”

• it can also be “LATIN SMALL LETTER A”
followed by “COMBINING DIAERESIS”

• both look exactly the same

No Normalization

No Normalization

No Normalization

No Normalization

To add insult to injury

Real-World example

The title of this talk has 24 characters :-)

Others screwed it up
too

PHP

• At least you get to chose the internal encoding.

• PHP only does bytes by default. strlen() means
bytelen()

• Forget a /u in preg_match and you’ll destroy
strings. \s matches UTF-8 ä (U+00EF is 0xa420
and 0x20 is ASCII space)

• use any non mb_* function on a utf-8 string to
break it

Python < 3.3
• They do clearly separate bytes and strings

• Use str.encode() to create bytes and
bytes.decode() to go back to strings

• Unfortunately, UCS2 (mostly)

Some did it ok

• Python 3.3 (PEP 393)

• Ruby 1.9 (avoids political issues by giving a
lot of freedom)

• Perl (awesome libraries since forever)

• ICU, ICU4C (http://icu-project.org/)

http://site.icu-project.org/

Solutions for JS

• Discussions happening for ES6

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

• On the server: Use ICU

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

• On the server: Use ICU

• Only normalization currently available at https://
github.com/astro/node-stringprep

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

• On the server: Use ICU

• Only normalization currently available at https://
github.com/astro/node-stringprep

• Manual bit-twiddling

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

• On the server: Use ICU

• Only normalization currently available at https://
github.com/astro/node-stringprep

• Manual bit-twiddling

• Regular expressions will still be broken

Solutions for JS

https://github.com/astro/node-stringprep

• Discussions happening for ES6

• Usable by 2040 or later I guess

• On the server: Use ICU

• Only normalization currently available at https://
github.com/astro/node-stringprep

• Manual bit-twiddling

• Regular expressions will still be broken

• Problem safe to ignore?

Solutions for JS

https://github.com/astro/node-stringprep

This was just the tip of
the iceberg!

This was just the tip of
the iceberg!

• Localization issues (Collation, Case change)

This was just the tip of
the iceberg!

• Localization issues (Collation, Case change)

• Security issues (Encoding, Homographs)

This was just the tip of
the iceberg!

• Localization issues (Collation, Case change)

• Security issues (Encoding, Homographs)

• Broken Software (including “US UTF-8”)

Highly recommended
Literature

Thank you!

• @pilif on twitter

• https://github.com/pilif/

 
 
Also: We are looking for a front-end designer
with CSS skills. Send them to me if you know
them (or are one)

https://github.com/pilif/

