expect("&.").length
.toBe()

No. It’s not just strings

A " & e . L} p
Bt ' } 5 By i - -
h -

Where’s the problem?

o "".Iength

b ' .Q. i}
-ao.

£z g o CEC A Rl R
-

I
) & 9 A."" i ; & oo i a . L’
» I alia N Py A A 14 _ }' U b g A7\ oy o SLISE e £ IF N~
e N H - v.b' A ...‘.4 ’ P .\'.',. A ol Y -;‘ P 0D o
. '

Others (PHP) already fail
here

® strlen(") ==

o 0_ strlen(" ")

Ah. But PHP sucks! Let’s
use Ruby.

pilif@miscweb ~ % ruby --version
ruby 1.8.7 (2011-02-18 patchlevel 334) [i686-1inux]
pilif@miscweb ~ % irb
| irb(main):001:0> "&".length
irb(main):002:0>

9 °
VWhatever.Ve're doing
JS and JS does it right.

>>> "'d’ .length
1

>>> "a" .length

1

>>> """ length
1

>>> 4 . length
2

>>> "&", length
2

= X

What gives!

-
i

You know. Historical

What is a string!

Compound type
Array of characters
C says char*

char is defined as the “smallest addressable
unit that can contain basic character set’.
Integer type. Might be sighed or unsighed

Ends up being a byte

Traditional string APls

® | ength of a string?! count bytes until the
end (\0) and divide by sizeof(char)

® Accessing the n-th character? Add
n*sizeof(char) to the pointer

® Remember: sizeof(char) usually is | and
guess how people “optimized”

Interacting with the
world

® Just dump the contents of the memory into
a file

® Read back the same contents and put it in
memory

® Problem solved.

® Until you need to do this across machines

Interoperability

® char is inherently implementation
dependent

® So is by definition the file you dump your
char™® into

® Can’t move files between machines

ASCI|

® “American Standard Code for Information
Interchange”

® Published 1963

M Dy b :
i ‘_:.f'. g S92 - e N LW
» Po AT ="t
» Loy . - " *J

X 3 ot . 4
-4 .-. K .‘.‘ .'.‘ 3 '-)

® Uses 7 bits per character (circumventing

But | need umlaute

Machines were used where people speak
strange languages (i.e. not English)

ASCII is 7bit. Adding a bit gives us another
|27 characters!

Depending on your country, these upper |27
characters had different meanings

No problem as texts usually don’t leave their
country

remember “chcp 850!

Thiis was not prossibl€!

Then the Internet

' - () | o X : e g -'0 }
i ‘ ‘ . 4] ! & e
,'_ P T <3 , 3 — o « .‘ : - [g o H
- > rig - = Vb E ' r L0

o
DR
. ey LSS _ P

Unicode |.0

® |6 bits per character
® Published in 1991, revised in 1992

® Jumped on by everybody who wanted “to
do it right”

® APIs were made Unicode compliant by
extending the size of a character to 16 bits.
Algorithms stayed the same

65K characters are

: I soi i g . 4_ . . .
ay ...-I‘_ ' .- R . / '.r A% ..yﬁ ‘1!‘", Y" ., '\..ﬁ_l," .. y

LS

. _-'/.
— e S0 Sl ot LT

-

640K are enough for

Still just dumping
memory

wchar is |6 bits

Endianness? See if we care!

To save to a file: Dump memory contents.
To load from a file: Read file into memory

Note they didn’t dare extending char to |6
bits

Let’s call this “Unicode”

|6 bits everywhere

Windows APIl (XxxxXxxWV uses wchar
which is 16 bit wide)

Java uses |6 bits
Objective C uses |6 bits
And of course, JavaScript uses |6 bits

C and by extension Unix stayed away from
this.

That’s perfect. By using
| 6 bit characters, we
can store all of Unicode!

It didn’t work out so
|

® By just dumping memory, there’s no way to
know how to read it back

® Heuristics suck (try typing “Bush hid the
facts” in Windows Notepad, saving,
reloading)

® Most protocols on the internet allow to
specify a character set

No. Really

® |mplementations lie.

® | egacy software had (well. has.) huge
problems with wide characters

[} & s et - .t . 'y 1 i
b L e S gat D 2 94N AL)4 A
VT e Rt hak Pl . it N
; : . ® o -
FE RO W R s W N L Y, P 4 Sy
L & . - -

3 - - - # e - P b - < ah
Tt S T i aS S oS il "SRRI A Tl Tomiee s £ ; A . i 2
POV B AL Ve ".:"'_ A A e Y w b 4 b; LY) - i o -
- 3 4 > R\] } e i 5% - 4

() wi? » . &4
e Toanr WSy *‘f‘
N 5 % X oy i

We learned

® UTF has happened

® specifically UTF-8 happened

o "
s T

R) Py | : 3 4 xS S g A .- e . .
>/ L g 4 f raa s s A . D $ N IR - el T 7,
K Y G - } % - e 'y - = N P P = s)
e - N B g v] v 4 -,
AT g (Y 1 Inm, =0 DR D9 9 W T e el Rt on vaitll Lot |
y :
N ’ td

Unicode 2.0+

® Theoretically unlimited code space
® Doesn’t talk about bits any more

® [he terminology is code point.

(B o 10y ._.‘ i ; A ' .._ ’ a4 r L ad 28 =L IR A e ';*"' st O A AT B S ' P
) v, Ty W SR N N ENTUEN NN N € A o S Rk B N N A T SIS (U L e O T o |
N | [N - y B | N v) 2 Ly o ’ - p

Unicode Transformation
Format

® Specifies how to store Unicode on disk

® Specifies exact byte encoding for every
Unicode code point

® Available for 8-, 16- and 32 bit encodings
per code point

® Not every byte sequence is a valid UTF
byte sequence (finally!)

UTF-8

® Uses an 8bit encoding to store code points

® |s the same as ASCII| for whatever’s in ASCII

° Uses mu|t|ple bytes to encode code pomts

) . Ak = > -
ey et B Rt y ‘ 3 b
R BT L SR o y * y A ﬂ_) .“. ‘ e é (s

UTF-16

Combines the worst of both worlds
Uses | 6bit to encode a code point

Uses multiple of |6bits to encode a code point
outside of the BMP

Wastes memory for ASCII, has byte-ordering-
issues and still breaks the old algorithms.

Is the only way for these |6bit bandwagon
jumpers to support Unicode 2.0 and later

UTF-32

® 4 bytes per character

® Byte ordering issues

= A \
4 S : y o £
P Y e LR PR D i an i og| > S g Voo I N %7
- 2 g AN AT AL T TR L L

Al ™ |
i

Strings are not bytes

A string is a sequence of characters

A byte array is a sequence of bytes

Both are incompatible with each other
You can encode a string into a byte array

You can decode a byte array into a string

Which brings us back to
JS

® Lives back in 1996

® Strings specified as being stored in UCS-2
(Fixed 16 bits per character)

® | eaks its implementation in the API

® Doesn’t know about Unicode 2.0

Browsers cheat

Browsers of course support Unicode 2.0
We need to display these piles of poo!

Browsers expose Unicode strings to |S
using UTF-16

The JS APl doesn’t know about UTF-16 (or
Unicode 2.0)

String methods are leaky

® String.length returns mish-mash of byte

length and character length for strings
outside the BMP

® substr() can break strings

® charAt() can return non-existing code-
points

® and let’s not talk about to*Case

problem?

Samples

>>> "Foo&Bar".length
8
>>> "FooaBar".charAt(3)

e 1
3o

>>> "Foo&aBar".substr(@, 4)
HFOO% n

That D8 3D is half of the UTF-16 encoding of U+1F4A9
which is 3d d8 a9 dc

Et tu RegEx!?

>>> "a" .match(/\w/)

Character classes don’t [a]

work right >>> "B" match(/\w/)
T null
ounting characters T
doesn’t work right >>> +".match(/./)
[;]
Can break strings >>> "B" match(/.{2}/)

["="]

Intermission: Digraphs

® 3 is not the same as a

® a can be “LATIN SMALL LETTER AWITH
DIAERESIS”

® it can also be “LATIN SMALL LETTER A”
followed by “COMBINING DIAERESIS”

® both look exactly the same

No Normalization

No Normalization

pilif@kosmos:~|=r tail -n 4 poo-utf8.html | head -n 2 | hexdump -C

00000000 20 20 20 20 3c 73 70 61 6e 20 69 64 3d 22 6f 6e | <span id="on]|
00000010 65 2d 63 6f 64 65 70 6f 69 6e 74 22 3e €3 ad>3c |e-codepoint”>..<|
00000020 2f 73 70 61 6e 3e Qa 20 20 20 20 3c 73 70 61 6e |/span>. <span|
00000030 20 69 64 3d 22 74 77 6f 2d 63 6f 64 65 70 6f 69 | id="two-codepoil]
00000040 6e 74 73 22 3e(E1 cc 88 3c 2f 73 70 61 6e 3e 0a |nts”>a...|
00000050

@ko
00000000
00000010
00000020
00000030
00000040
00000050

No Normalization

SMOoS: ™

20
65
2f
20
be

20 20 20 3c 73 70 61
2d 63 6f 64 65 70 6f
73 70 61 6e 3e @a 20
69 64 3d 22 74 77 6f
74 73 22 3e(1 cc 88

<body>
a

6e
69
20
2d
3cC

= tail -n 4 poo-utf8.html |

20 69
6e 74
20 20
63 6f
2f 73

head -n 2 | hexdump -C

64 3d 22 6f 6e
22 3e €3 ad3c
3¢ 73 70 61 6e
64 65 70 6f 69
70 61 6e 3e Qa

| <span id="on|
| e-codepoint”>. .<|
| /span>. <span|
| id="two-codepoi |
Ints”>a. .. |

a
</body>

No Normalization

@kosmos:~|=» tail -n 4 poo-utf8.html | head -n 2 | hexdump -C

00000000
00000010
00000020
00000030
00000040
00000050

20 20 20 20 3c 73 70 61 6e 20 69 64 3d 22 6f 6e | <span id="on|
65 2d 63 6f 64 65 70 6f 69 6e 74 22 3e €3 ad>3c |e-codepoint”>..<|
2f 73 70 61 6e 3e 0a 20 20 20 20 3c 73 70 61 6e |/span>. <span|

20 69 64 3d 22 74 77 6f 2d 63 6f 64 65 70 6f 69 | id="two-codepoi |
6e 74 73 22 3e(61 cc 88) 3c 2f 73 70 61 6e 3e Qa |nts">a...|

<body>

a
a
body>

</

one_codepoint = document.getElementById('one-codepoint’).innerHTML;

two_codepoints = document.getElementById('two-codepoints').1innerHTML

mee=n

a

>>> one_codepoint == two_codepoints

false

lo aad insult to injury

>>> two_codepoints.length

2

Real-World example

SwissJeese - Call to paper

You want to give a talk at SwissJeese! That's a great idea! Now go ahead and fill the form...

What is the title of your presentation? *
expect("&'.length).toBe(1)

Maximum Allowed: 255 characters. Currently Used: 25 characters.

The title of this talk has 24 characters :-)

thers screwed it up

PHP

At least you get to chose the internal encoding.

PHP only does bytes by default. strlen() means
bytelen()

Forget a /u in preg_match and you'll destroy
strings. \s matches UTF-8 a (U+00EF is 0xa420
and 0x20 is ASCII space)

use any non mb_* function on a utf-8 string to
break it

Python < 3.3

® They do clearly separate bytes and strings

® Use str.encode() to create bytes and
bytes.decode() to go back to strings

® Unfortunately, UCS2 (mostly)

Python 3.1.1+ (r311:74480, Nov 2 2009, 14:49:22)

[GCC 4.4.1] on linux2

Type "help”, "copyright”, "credits” or "license” for more information.
>>> len("a”)

1

>>> len("é”)

1

>>> len(nwi)

2

>>>

Some did it ok

® Python 3.3 (PEP 393)

® Ruby |.9 (avoids political issues by giving a
lot of freedom)

http://site.icu-project.org/

Solutions for |S

Solutions for |S

® Discussions happening for ES6

https://github.com/astro/node-stringprep

Solutions for |S

® Discussions happening for ES6

® Usable by 2040 or later | guess

https://github.com/astro/node-stringprep

Solutions for |S

® Discussions happening for ES6

® Usable by 2040 or later | guess

® On the server: Use ICU

https://github.com/astro/node-stringprep

Solutions for |S

® Discussions happening for ES6
® Usable by 2040 or later | guess

® On the server: Use ICU

® Only normalization currently available at https://

s A g o | Dol s NS O = N __ "V ’ R aN (5 2| o - At ot L N S$E- Pt ol e e 4 N -
Bl e SR S (e e S HALE ae,qm . JO//TI100 >y D OB e it Slic, bR 3Gt LSO M A T & el Dol T st a0 A by
e R e e e L e Al e e i oy [z o o e i bt i o e R S B s et S L)

< J N
o ey 0_3 LNt s
\

Ny

https://github.com/astro/node-stringprep

Solutions for |S

® Discussions happening for ES6
® Usable by 2040 or later | guess
® On the server: Use ICU

® Only normalization currently available at https://
~ github.com/astro/node-stringprep

https://github.com/astro/node-stringprep

Solutions for |S

® Discussions happening for ES6
® Usable by 2040 or later | guess
® On the server: Use ICU

® Only normalization currently available at https://

2.49% al 'l ” g T T " ¢ W
: O rdaaih ok S €l VY T o b sim e g

’ s
i # f' Sl STl S XY e L) A A"' [~

P

SN T
bl S il
¢ ‘M

https://github.com/astro/node-stringprep

Solutions for |S

Discussions happening for ES6
Usable by 2040 or later | guess
On the server: Use ICU

® Only normalization currently available at https://
github.com/astro/node-stringprep

Manual bit-twiddling
Regular expressions will still be broken

Problem safe to ignore?

https://github.com/astro/node-stringprep

This was just the tip of
the iceberg!

This was just the tip of
the iceberg!

® | ocalization issues (Collation, Case change)

This was just the tip of
the iceberg!

® | ocalization issues (Collation, Case change)

- ® Security issues (Encoding, Homographs) e

RN &
S ST Lty b .)
.= . e L T T P o 0 :

This was just the tip of
the iceberg!

® | ocalization issues (Collation, Case change)

® Security issues (Encoding, Homographs)

® Broken Software (including “US UTF-8")

Righly recommended
Literature

Internationalize Documents, Programs, and Web Sites

Explained

O’REILLY¢ i Jukka K. Korpela

Thank you!

® @pilif on twitter

® https://github.com/pilif/

https://github.com/pilif/

