
WHAT just happened?
Reacting to Events on the Server

Administrative Notes

• @pilif on twitter

• pilif on github

• working at Sensational AG

• @pilif on twitter

• pilif on github

• working at Sensational AG

• strongly dislike shirts

"💩".length() is still 2

Though there is a lot of good news with ES6

There will be some ☕

Demo first™

Server-Side Events

• Inform users about stuff happening while they are
using the site

• Edits made to the current resource by other people

• Chat Messages

• Mobile Devices interacting with the Account

Additional Constraints

• Must not lose events

• Events must be unique

• Must work with shared sessions

• Separate channels per user

• Must work* even when hand-written daemons are down

• Must work* in development without massaging daemons

Not losing events
• Race condition between event happening and

infrastructure coming up on page load

• Need to persist events

• Using a database

• Using a sequence (auto increment ID) to identify last
sent event

• Falling back to timestamps if not available (initial page
load)

But back to the topic

TIMTWWTDI
*

• Short Polling

• Long Polling

• EventSource

• Web Sockets

* yes. I’m that old

Short Polling

• Are we there yet?

• Are we there yet?

• Are we there yet?

• And now?

Long Polling

• Send a Query to the Server

• Have the server only* reply when an event is available

• Keep the connection open otherwise

• Response means: event has happened

• Have the client reconnect immediately

Server-Sent Events

• http://www.w3.org/TR/eventsource/

• Keeping a connection open to the server

• Server is sending data as text/event-stream

• Colon-separated key-value data.

• Empty line separates events.

http://www.w3.org/TR/eventsource/

WebSockets

• «TCP/IP in your browser»*

• Full Duplex

• Message passing

• Persistent connection between Browser and Server

Let’s try them

Surprise Demo™
also Demo first™

index.html

<script>
 (function(){
 var channel = new EventChannel();
 var log_ws = $('#websockets');
 $(channel.bind('cheese_created', function(e){
 log_ws.prepend($(‘').text(
 e.pieces + ' pieces of ' + e.cheese_type
));
 });
 })();
</script>

index.html

<script>
 (function(){
 var channel = new EventChannel();
 var log_ws = $('#websockets');
 $(channel.bind('cheese_created', function(e){
 log_ws.prepend($(‘').text(
 e.pieces + ' pieces of ' + e.cheese_type
));
 });
 })();
</script>

index.html

<script>
 (function(){
 var channel = new EventChannel();
 var log_ws = $('#websockets');
 $(channel.bind('cheese_created', function(e){
 log_ws.prepend($(‘').text(
 e.pieces + ' pieces of ' + e.cheese_type
));
 });
 })();
</script>

index.html

<script>
 (function(){
 var channel = new EventChannel();
 var log_ws = $('#websockets');
 $(channel.bind('cheese_created', function(e){
 log_ws.prepend($(‘').text(
 e.pieces + ' pieces of ' + e.cheese_type
));
 });
 })();
</script>

publish.js

• Creates between 5 and 120
pieces of random Swiss cheese

• Publishes an event about this

• We’re using redis as our Pub/Sub
mechanism, but you could use
other solutions too

• Sorry for the indentation, but
code had to fit the slide

var cheese_types = ['Emmentaler',
 'Appenzeller', 'Gruyère',
 'Vacherin', ‘Sprinz'
];

function create_cheese(){
 return {
 pieces: Math.floor(Math.random()
 * 115) + 5,
 cheese_type:
 cheese_types[Math.floor(
 Math.random()
 *cheese_types.length
)]
 }
}

var cheese_delivery =
create_cheese();
publish(cheese_delivery);

Web Sockets

Server

• Do not try this at home

• Use a library. You might know of socket.io – Me
personally, I used ws.

• Our code: only 32 lines.

This is it
var WebSocketServer = require('ws').Server;
var redis = require('redis');

var wss = new WebSocketServer({port: 8080});
wss.on('connection', function(ws) {
 var client = redis.createClient(6379, 'localhost');
 ws.on('close', function(){
 client.end();
 });
 client.select(2, function(err, result){
 if (err) {
 console.log("Failed to set redis database");
 return;
 }
 client.subscribe('channels:cheese');
 client.on('message', function(chn, message){
 ws.send(message);
 });
 })
});

Actually, this is the meat

client.subscribe('channels:cheese');
client.on('message', function(chn, message){
 ws.send(message);
});

And here’s the client

(function(window){
 window.EventChannelWs = function(){
 var socket = new WebSocket("ws://localhost:8080/");
 var self = this;
 socket.onmessage = function(evt){
 var event_info = JSON.parse(evt.data);
 var evt = jQuery.Event(event_info.type, event_info.data);
 $(self).trigger(evt);
 }
 }
})(window);

And here’s the client

(function(window){
 window.EventChannelWs = function(){
 var socket = new WebSocket("ws://localhost:8080/");
 var self = this;
 socket.onmessage = function(evt){
 var event_info = JSON.parse(evt.data);
 var evt = jQuery.Event(event_info.type, event_info.data);
 $(self).trigger(evt);
 }
 }
})(window);

And here’s the client

(function(window){
 window.EventChannelWs = function(){
 var socket = new WebSocket("ws://localhost:8080/");
 var self = this;
 socket.onmessage = function(evt){
 var event_info = JSON.parse(evt.data);
 var evt = jQuery.Event(event_info.type, event_info.data);
 $(self).trigger(evt);
 }
 }
})(window);

And here’s the client

(function(window){
 window.EventChannelWs = function(){
 var socket = new WebSocket("ws://localhost:8080/");
 var self = this;
 socket.onmessage = function(evt){
 var event_info = JSON.parse(evt.data);
 var evt = jQuery.Event(event_info.type, event_info.data);
 $(self).trigger(evt);
 }
 }
})(window);

Sample was very simple

• No synchronisation with server for initial event

• No fallback when the web socket server is down

• No reverse proxy involved

• No channel separation

Flip-Side

Powering Your 39 Lines

• 6K lines of JavaScript code

• Plus 3.3K lines of C code

• Plus 508 lines of C++ code

• Which is the body that you actually run (excluding
tests and benchmarks)

• Some of which redundant because NPM

WebSockets are a bloody mess™

• RFC6455 is 71 pages long

• Adding a lot of bit twiddling to intentionally break
proxy servers

• Proxies that work might only actually work*

• Many deployments require a special port to run over

Use SSL.
By the Gods. Use SSL

EventSource

Client

var cheese_channel = new EventSource(url);
var log_source = $('#eventsource');
cheese_channel.addEventListener('cheese_created', function(e){
 var data = JSON.parse(e.data);
 log_source.prepend($(‘').text(
 data.pieces + ' pieces of ' + data.cheese_type
));
});

Client

var cheese_channel = new EventSource(url);
var log_source = $('#eventsource');
cheese_channel.addEventListener('cheese_created', function(e){
 var data = JSON.parse(e.data);
 log_source.prepend($(‘').text(
 data.pieces + ' pieces of ' + data.cheese_type
));
});

Client

var cheese_channel = new EventSource(url);
var log_source = $('#eventsource');
cheese_channel.addEventListener('cheese_created', function(e){
 var data = JSON.parse(e.data);
 log_source.prepend($(‘').text(
 data.pieces + ' pieces of ' + data.cheese_type
));
});

Client

var cheese_channel = new EventSource(url);
var log_source = $('#eventsource');
cheese_channel.addEventListener('cheese_created', function(e){
 var data = JSON.parse(e.data);
 log_source.prepend($(‘').text(
 data.pieces + ' pieces of ' + data.cheese_type
));
});

Server
• Keeps the connection open

• Sends blank-line separated groups of key/value pairs as events happen

• Can tell the client how long to wait when reconnecting

Disillusioning
• Bound to the 6-connections per host rule

• Still needs manual synchronising if you don’t want to lose events

• Browser support is as always

Disillusioning
• Bound to the 6-connections per host rule

• Still needs manual synchronising if you don’t want to lose events

• Browser support is as always

Long Polling

I like it
• Works even with IE6 (god forbid you have to do this)

• Works fine with proxies

• On both ends

• Works fine over HTTP

• Needs some help due to the connection limit

• Works even when your infrastructure is down*

Production code

• The following code samples form the basis of the
initial demo

• It’s production code

• No support issue caused by this.

• Runs fine in a developer-hostile environment

Caution: ☕ ahead

Synchronising using the
database

events_since_id = (channel, id, cb)->
 q = """
 select * from events
 where channel_id = $1 and id > $2
 order by id asc
 """
 query q, [channel, id], cb

events_since_time = (channel, ts, cb)->
 q = """
 select * from events o
 where channel_id = $1
 and ts > (SELECT TIMESTAMP WITH TIME ZONE 'epoch'
 + $2 * INTERVAL '1 second’
)
 order by id asc
 """
 query q, [channel, ts], cb

The meat
handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

fetch_events channel, last_event_id, (err, evts)->
 return http_error res, 500, 'Failed to get event data: ' + err if err

 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

 set_waiting()
 subscribe channel, handle_subscription

if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

• If events are pending

• Or if there’s already a connection waiting for the same
channel

• Then return the event data immediately

• And tell the client when to reconnect

• The abort_processing mess is because of support for
both EventSource and long-polling

if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

• If events are pending

• Or if there’s already a connection waiting for the same
channel

• Then return the event data immediately

• And tell the client when to reconnect

• The abort_processing mess is because of support for
both EventSource and long-polling

if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

• If events are pending

• Or if there’s already a connection waiting for the same
channel

• Then return the event data immediately

• And tell the client when to reconnect

• The abort_processing mess is because of support for
both EventSource and long-polling

if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

• If events are pending

• Or if there’s already a connection waiting for the same
channel

• Then return the event data immediately

• And tell the client when to reconnect

• The abort_processing mess is because of support for
both EventSource and long-polling

if waiting() or (evts and evts.length > 0)
 abort_processing = write(res, evts, not waiting());
 if waiting() or abort_processing
 unsubscribe channel, handle_subscription
 res.end()

• If events are pending

• Or if there’s already a connection waiting for the same
channel

• Then return the event data immediately

• And tell the client when to reconnect

• The abort_processing mess is because of support for
both EventSource and long-polling

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

LOL - Boolean
parameter!!!

handle_subscription = (c, message)->
 fetch_events channel, last_event_id, (err, evts)->
 return http_error 500, 'Failed to get event data' if err
 abort_processing = write res, evts, true
 last_event_id = evts[evts.length-1].id if (evts and evts.length > 0)
 if abort_processing
 unsubscribe channel, handle_subscription
 clear_waiting()
 res.end()

set_waiting()
subscribe channel, handle_subscription

Waiting

Fallback

• Our fronted code connects to /e.php

• Our reverse proxy redirects that to the node
daemon

• If that daemon is down or no reverse proxy is there,
there’s an actual honest-to god /e.php …

• …which follows the exact same interface but is
always* short-polling

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

Client is more complicated
 poll: =>
 url = "#{@endpoint}/#{@channel}/#{@wait_id}"
 $.ajax url,
 cache: false,
 dataType: 'json',
 headers:
 'Last-Event-Id': @last_event_id
 success: (data, s, xhr) =>
 return unless @enabled
 @fireAll data

 reconnect_in = parseInt xhr.getResponseHeader('x-ps-reconnect-in'), 10
 reconnect_in = 10 unless reconnect_in >= 0
 setTimeout @poll, reconnect_in*1000 if @enabled
 error: (xhr, textStatus, error) =>
 return unless @enabled
 # 504 means nginx gave up waiting. This is totally to be
 # expected and we can just treat it as an invitation to
 # reconnect immediately. All other cases are likely bad, so
 # we remove a bit of load by waiting a really long time
 # 12002 is the ie proprietary way to report an WinInet timeout
 # if it was registry-hacked to a low ReadTimeout.
 # This isn't a server-error, so we can just reconnect.
 rc = if (xhr.status in [504, 12002]) || (textStatus == 'timeout') then 0 else 10000
 setTimeout @poll, rc if @enabled

So. Why a daemon?

• Evented architecture lends itself well to many open
connections never really using CPU

• You do not want to long-poll with forking
architectures

• Unless you have unlimited RAM

In conclusion
also quite different from what I initially meant to say

https://twitter.com/pilif/status/491943226258239490

https://twitter.com/pilif/status/491943226258239490

And that was last
wednesday

So…

• If your clients use browsers (and IE10+)

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• and if you can use SSL

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• and if you can use SSL

• then use WebSockets

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• and if you can use SSL

• then use WebSockets

• Otherwise use long polling

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• and if you can use SSL

• then use WebSockets

• Otherwise use long polling

• Also, only use one - don’t mix - not worth the effort

• If your clients use browsers (and IE10+)

• and if you have a good reverse proxy

• and if you can use SSL

• then use WebSockets

• Otherwise use long polling

• Also, only use one - don’t mix - not worth the effort

• EventSource, frankly, sucks

Thank you!

• @pilif on twitter

• https://github.com/pilif/server-side-events 

Also: We are looking for a front-end designer with CSS
skills and a backend developer. If you are interested or
know somebody, come to me

https://github.com/pilif/server-side-events

