

OOP and PHP 5.3

 South Florida PHP Users Group

Adam Culp
http://www.Geekyboy.com

In this presentation we will talk about OOP, and discuss
the object model progression in PHP from version 4
through the newest 5.3.

I apologize in advance, but this will not be in great detail
though I hope it is enough to help everyone in some
way.

Procedural? Really?

• PHP was started as a procedural
tool to perform quick tasks.
Large adoption brought more
users who wanted OOP, so here
we are.
– Everything went fairly sequential
– Took a fair amount of labor within

code to change values afterward
– Procedural does make sense for

simple tasks, such as CRON jobs to
perform quick tasks.

<?php
function vehicle($wheels, $color, $hp) {

// build a car using info provided
$car = array(

‘wheels’ => $wheels,
‘color’ => $color,
‘hp’ => $hp);

return $car;
}

$car = vehicle(4, ‘red’, 240);

// now continue with code that uses $car
If ($car[‘color’] == ‘red’) {

echo ‘Your car is red’;
}

?>

Output:
Your car is red

Possible usage:
Here is the car: <?php print_r($car); ?>

OOP the basics

• PHP 4 brought the introduction
of oop to PHP.
– Application builds an object
– Helps with DRY (Don’t repeat

yourself)
– Simplifies structure, code still can

be sequential but is more ‘modular’
– Helps keep code more readable
– Object can be manipulated easier

prior to use of the object
– We instantiate the class by creating

a “new” object, then manipulate the
object by calling the different
“methods” within the class.

<?php
Interface mobility {

function setColor($color);
function setHorsepower($hp);

}

class Vehicle implements mobility {
public $color;
public $horsepower;

function setColor($color) {
$this->color = $color;

}

function setHorsepower($hp) {
$this->horsepower = $hp;

}
}

Class Car extends Vehicle {
public $wheel;

function addWheel($n) {
$this->wheel += $n;

}
}

$myCar = new Car();
$myCar->setColor(‘red’);
$myCar->setHorsepower(250);
$myCar->addWheel(3);
$myCar->addWheel(1);

print_r($myCar);
?>

Output:
Car Object([wheel]=>4[color]=>red[horsepower]=>250)

PHP 4 revisit

• PHP 4 had a very basic OOP
presence, and looked something
like this ->
– Variables need to be defined as

‘var’.
– Constructors carried the same name

as the Class.
• Note: the constructor always runs

“automagically” when the class is
instantiated

– No visibility
– No abstraction
– Very simple and easy to use, but

lacked many features of other OOP
languages at the time.

<?php
class Reference {

var $reference;

// acted as constructor
function Reference() {

$this->reference = ‘dictionary’;
}

function getReference() {
return $this->reference;

}
}

$rt = new Reference();
$reference = $rt->getReference;
echo ‘reference:’ . $reference;
?>

Output:
reference: dictionary

PHP 5.0 brought changes

• With the rollout of PHP 5.0 there were many
changes.

– Protected data with Visibility
• Public (default) – accessed and changed

globally
• Protected – access and changed by

direct descendants
• Private – access and changed within

class only
– Type Hinting – notice how we specify that an

object of Language is passed to the
constructor. This means we must create an
object using the Language class first.

– Variables no longer need the ‘var’ keyword
– Constructor now defined using __construct

call
– CONSTANT values may now be assigned

per-class, cannot be a variable or property or
mathematical operation or function call.

<?php
class Reference {

const DEFAULT_LANG = ‘eng’;

private $reference;
private $lang;

public function __construct(Language $lang) {
if($lang) {

$this->lang = $lang->esp;
} else {

$this->lang = DEFAULT_LANG;
}
$this->reference = ‘dictionary’;

}

public function getReference() {
return $this->reference;

}

private function setPrivateReference() {
$this->reference = ‘my_dictionary’;

}
}

class Language {
public $esp = ‘Spanish’;

}

$lang = new Language();
$rt = new Reference($lang);
$reference = $rt->getReference;
echo ‘reference:’ . $reference;
?>

Output:
Reference: Spanish

PHP 5.0 Abstraction

• Abstraction
– Abstraction, if a class contains any abstract

methods the class must also be abstract.
– Abstracted methods must be defined by the

child class.
– Visibility in the method of the child class

must be the same, or less, restricted.
– “final” keyword prevents child classes from

overriding a method
– “clone” creates a copy of an object rather

than continuing to use the same object.

<?php
abstract class Reference {

public $reference;

abstract public function read();

public function __construct() {
$this->reference = ‘dictionary’;

}

final public function getReference() {
return $this->reference;

}

protected function setProtectedReference($myReference) {
$this->reference = $myReference;

}
}

class Letter extends Reference {
public function read($personal) {

$myDictionary = $personal;

parent::setProtectedReference($myDictionary);

return $this->reference;
}

}

$rt = new Letter();
$reference = $rt->read(‘my english dictionary’);
$rt2 = clone $rt;

echo ‘reference:’ . $reference;
?>

Output:
reference: my english dictionary

PHP 5.0 Interfaces

• Interface
– Interface, specifies which methods a

class must implement.
– All methods in interface must be public.
– Multiple interfaces can be implemented

by using comma separation
– Interface may contain a CONSTANT,

but may not be overridden by
implementing class

<?php
interface rTemplate
{

public function getReference();
public function setProtectedReference();

}

class Reference implements rTemplate {
public $reference;

public function __construct() {
$this->reference = ‘dictionary’;

}

public function getReference() {
return $this->reference;

}

protected function setProtectedReference($myReference) {
$this->reference = $myReference;

}
}

$rt = new Letter();
$reference = $rt->getReference();

echo ‘reference:’ . $reference;
?>

Output:
reference: dictionary

PHP 5.0 Exceptions

• Additional features with PHP 5.
– Exceptions – throwing an exception

to gracefully error out, while
continuing to execute the rest of the
script even after the error.

• Notice how we still get ‘Hello
World’ even after an exception
caused by ‘Division by zero’.

– Exceptions can then be caught for
logging, etc.

<?php
function inverse($x) {

if (!$x) {
throw new Exception(‘Division by zero.’);

} else {
return 1/$x;

}
}

try {
echo inverse(5) . “\n”;
echo inverse(0) . “\n”; // trigger exception

} catch (Exception $e) {
echo ‘Caught exception: ‘, $e->getMessage(), “\n”;

}

// continue execution
echo ‘Hello World’;
?>

Output:
0.2
Caught exception: Division by zero.
Hello World

Finally, PHP 5.3 features

• Additional features with PHP 5.3
– Namespaces
– Late Static Bindings
– Jump labels (goto)
– Closures
– __callStatic() and __invoke()
– Class Constants
– Nowdoc syntax supported
– Use Heredocs to initialize static

variables and class properties
– Heredocs with double quotes
– Ternary operator shortcut
– HTTP status 200 to 399 = success
– Dynamic access to static methods
– Exception nesting
– mail() logging of sent email

Namespaces

• Namespaces
– Help create a new layer of code

encapsulation.
• Keep properties from colliding

between areas of your code
• Only classes, interfaces, functions

and constants are affected
– Anything that does not have a

namespace is considered in the
Global namespace (namespace =
“”)

– Namespace must be declared first
(except ‘declare’ statement)

– Can define multiple namespaces in
the same file.

<?php
declare (encoding=‘UTF-8’);

namespace automobile;

class Automobile {
function setType($type) {

echo __NAMESPACE__ . “\n”;
}

}

namespace automobile\car;

class Car {
function toyota() {

echo “test drive\n”;
}

}

$car = new Car
$car->toyota();

// OR you can use the namespace

$auto = new \automobile\car\Car;
$auto->toyota();

?>

Output:
test drive
test drive

Namespaces – cont.

• Namespaces – cont.
– You can define that something be

used in the “Global” namespace by
enclosing a non-labeled namespace
in {} brackets. (Note: if you have
multiple namespaces in the same
file they must all use this notation.)

– Use namespaces from within other
namespaces, along with aliasing

<?php
namespace automobile;

class Automobile {
function setType($type) {

echo __NAMESPACE__ . “\n”;
}

}

namespace automobile\car;

use automobile as auto;

class Car {
function toyota() {

echo “test drive\n”;
}

}

namespace {
//global code, for this to work the examples above would also
need to use bracketed syntax

}

$automobile = new auto\Automobile;
$automobile->setType(‘none’);
?>

Output:
automobile

Late Static Bindings

• Late Static Binding
– Stores the class name of the last

“non-forwarded call”.

<?php
class Automobile {

private function type() {
echo “Success!\n”;

}

public function test() {
$this->type();
static::type();

}
}

class Car extends Automobile {
// empty

}

Class Truck extends Automobile {
private function type() {

// empty
}

}

$car = new Car;
$car->test();
$truck = new Truck;
$truck->test(); //fails because there is no test() in Truck
?>

Output:
Success!
Success!
Success!
Fatal error: Call to private method Truck::type() from context

‘Automobile’ in {file} on line n

Jump Labels (goto)

• Jump Labels (goto)
– Used to jump to another section in

the program.
– Target is specified by a label

followed by a colon.
– Target must be within the same file

and context.
• Cannot jump out of a function or

method, and cannot jump into one.
– Cannot jump into any sort of loop

or switch structure, but may jump
out.

<?php
// some code here

goto a;
echo ‘Foo’;

// more code here

a:

echo ‘Bar’;
?>

Output:
Bar

Closures (Anonymous functions)

• Closures (Anonymous functions)
– Allows the creation of functions

which have no specific name.
– Most useful as the value of callback

parameters.
– Can be used as the value of a

variable.
– Can inherit variables from the

parent scope. (Not the same as
using global variables)

<?php
class Cart {

protected $products = array();
const PRICE_SHIRT = 20.00;
const PRICE_SCARF = 4.00;

public function order() {
$this->products[‘shirt’] = 2;
$this->products[‘scarf’] = 3;

}

public function getTotal($tax) {
$total = 0.00;

$callback = function ($quantity, $product) use ($tax, &$total)
{

$pricePerItem =
constant(__CLASS__ . “::PRICE_” .

strtoupper($product));

$total += ($pricePerItem * $quantity) * ($tax +1.0);
};
array_walk($this->products, $callback);

return round($total, 2);
}

}
?>

Output:
55.64

Nested Exceptions

• Nested Exceptions
– Now your criteria within a “try” can

also have another “try” nested
within, thus causing two levels of
failure to caught for further logging.

<?php
class MyException extends Exception {}

class Test {
public function testing() {
try {

try {
throw new MyException(‘foo!’);

} catch (MyException $e) {
throw $e;

}
} catch (Exception $e) {

var_dump($e->getMessage());
}

}
}

$foo = new Test;
$foo->testing();
?>

Output:
String(4) “foo!”

New magic methods

• __callStatic()
– Used during overloading. Gives

warning to enforce public visibility
and non-static declaration.

• Triggered when invoking
inaccessible methods in a static
context.

• __invoke()
– Called when a script tries to call an

object as a function

No code to go with this…
yet. Experiment on your
own.

Nowdoc

• Nowdoc
– nowdoc is similar to heredoc, but

no parsing is done inside a nowdoc.
• Ideal for code snippets or large

blocks of text without the need for
escaping.

• Best used with static content.
– Uses the same <<< sequence, but

the following identifier is encosed
in single quotes.

<?php
echo <<<‘EOT’
My name is “$name”. I am printing some

$foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: /x41
EOT;
?>

Output:
My name is “$name”. I am printing some

$foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: /x41

Heredoc changes

• Heredoc
– heredoc can now initialize static

variables and class
properties/constants.

– Can now be declared (optional)
using double quotes,
complementing the nowdoc syntax
which uses single quotes.

<?php
// Static variables
function foo() {

static $bar = <<<“LABEL”
Nothing in here…
LABEL;
}

// Class properties/constants
Class foo {

const BAR = <<<FOOBAR
Constant example
FOOBAR;

public $baz = <<<FOOBAR
Property example
FOOBAR
}

?>

Constants addition

• Constants addition
– A constant may now be declared

outside a class using the ‘const’
keyword instead of ‘declare’.

<?php
const TEST = ‘bar’;

Function foo() {
echo ‘foo’;

}

foo();

echo TEST;

?>

Ternary added shortcut

• Constants added shortcut
– Can now use ternary for simpler

returns of evaluation.
– Instead of defining the ‘middle’ part

of the operation we simply get a ‘1’
if the first expression is true.
Otherwise we receive what is in the
third part, as we used to.

<?php

$test = true;

// old way
$todo = ($test ? ‘Go’ : ‘Stop’);

echo $todo;

// added shortcut
// if $test = true then we get a true flag, otherwise we get

the second expression as a result
$tada = ($test ?: ‘whatever’);

echo $tada;

?>

Output (true):
Go1

Output (false):
Stopwhatever

Questions and Resources

 South Florida PHP Users Group

Adam Culp http://www.Geekyboy.com

Email: adam@geekyboy.com

Resources:

http://php.net/manual/en/migration53.new-
features.php

	OOP and PHP 5.3
	Procedural? Really?
	OOP the basics
	PHP 4 revisit
	PHP 5.0 brought changes
	PHP 5.0 Abstraction
	PHP 5.0 Interfaces
	PHP 5.0 Exceptions
	Finally, PHP 5.3 features
	Namespaces
	Namespaces – cont.
	Late Static Bindings
	Jump Labels (goto)
	Closures (Anonymous functions)
	Nested Exceptions
	New magic methods
	Nowdoc
	Heredoc changes
	Constants addition
	Ternary added shortcut
	Questions and Resources

