OOP and PHP 5.3

South Florida PHP Users Group

Adam Culp

http://www.Geekyboy.com

In this presentation we will talk about OOP, and discuss
the object model progression in PHP from version 4
through the newest 5.3.

| apologize in advance, but this will not be in great detall
though | hope it is enough to help everyone in some
way.

Procedural? Really?

* PHP was started as a procedural
tool to perform quick tasks.
Large adoption brought more
users who wanted OOP, so here
we are.

— Everything went fairly sequential

— Took a fair amount of labor within
code to change values afterward

— Procedural does make sense for
simple tasks, such as CRON jobs to
perform quick tasks.

<?php
function vehicle($wheels, $color, $hp) {

// build a car using info provided
$car = array(
‘wWheels’ => $wheels,
‘color’ => $color,
‘hp’ => $hp);

return $car;

-

$car = vehicle(4, ‘red’, 240);

// now continue with code that uses $car
If ($car[‘color’'] == ‘red’) {
echo ‘Your car is red’;

}

?7>
Output:

Your car is red

Possible usage:
Here is the car: <?php print_r($car); 2>

OOP the basics

* PHP 4 brought the introduction
of oop to PHP.

— Application builds an object

Helps with DRY (Don’t repeat
yourself)

Simplifies structure, code still can
be sequential but 1s more ‘modular’

Helps keep code more readable

Object can be manipulated easier
prior to use of the object

We instantiate the class by creating
a “new’’ object, then manipulate the
object by calling the different
“methods” within the class.

<?php

Interface mobility {
function setColor($color);
function setHorsepower($hp);

}

class Vehicle implements mobility {
public $color;
public $horsepower;

function setColor($color) {
$this->color = $color;
}

function setHorsepower($hp) {
$this->horsepower = $hp;
}
}

Class Car extends Vehicle {
public $wheel;

function addWheel($n) {
$this->wheel += $n;
}
}

$myCar = new Car();
$myCar->setColor(‘red’);
$myCar->setHorsepower(250);
$myCar->addWheel(3);
$myCar->addWheel(1);

print_r($myCar);
7>

Output:

Car Object([wheel]=>4[color]=>red[horsepower]=>250)

PHP 4 revisit

* PHP 4 had a very basic OOP <?php

class Reference {

presence, and looked something var $reference;
like this ->) acted
. acted as constructor
— ‘Varl,ables need to be defined as function Reference() {
var'. $this->reference = ‘dictionary’;
— Constructors carried the same name }

as the Class.

* Note: the constructor always runs
“automagically” when the class 1s }
instantiated }

— No visibilit
y $rt = new Reference();

— No abs.tractlon $reference = $rt->getReference;
— Very simple and easy to use, but echo ‘reference:’ . $reference;

lacked many features of other OOP ?>
languages at the time.

function getReference() {
return $this->reference;

Output:
reference: dictionary

PHP 5.0 brought changes

* With the rollout of PHP 5.0 there were many <?php
class Reference {
changes. const DEFAULT_LANG = ‘eng’;
— Protected data with Visibility private $reference;
* Public (default) — accessed and changed private $lang;
globally public function __construct(Language $lang) {
if($lang) {
* Protected — access and changed by $this->lang = $lang->esp:
direct descendants } else {
g o el o $this->lang = DEFAULT LANG;
* Private — access and changed within } | ? -
class Only $this->reference = ‘dictionary’;
.. : : }
— Type Hinting — notice how we specify that an | _
object of Language is passed to the public function getReference() {
. return $this->reference;
constructor. This means we must create an }
object using the Language class first. , , ,
. ‘ R private function setPrivateReference() {
— Variables no longer need the ‘var’ keyword $this->reference = ‘my_dictionary’;
— Constructor now defined using construct } :
call . .
. class Language
— CONSTANT values may now be assigned public $esp = ‘Spanish’;
per-class, cannot be a variable or property or !
mathematical operation or function call. $lang = new Languagel):

$rt = new Reference($lang);
$reference = $rt->getReference;
echo ‘reference:’ . $reference;
7>

Output:
Reference: Spanish

PHP 5.0 Abstraction

Abstraction

Abstraction, if a class contains any abstract
methods the class must also be abstract.

Abstracted methods must be defined by the
child class.

Visibility in the method of the child class
must be the same, or less, restricted.

“final” keyword prevents child classes from
overriding a method

“clone” creates a copy of an object rather
than continuing to use the same object.

<?php
abstract class Reference {
public $reference;

abstract public function read();

public function __construct() {
$this->reference = ‘dictionary’;
}

final public function getReference() {
return $this->reference;
}

protected function setProtectedReference($myReference) {
$this->reference = $myReference;
}
}

class Letter extends Reference {
public function read($personal) {
$myDictionary = $personal;
parent::setProtectedReference($myDictionary);

return $this->reference;

}

$rt = new Letter();
$reference = $rt->read(‘my english dictionary’);
$rt2 = clone $rt;

echo ‘reference:’ . $reference;
7>

Output:
reference: my english dictionary

PHP 5.0 Interfaces

: <?php
Interface interface rTemplate

— Interface, specifies which methods a { | |
1 t 1 1 t public function getReference();
class must implement. public function setProtectedReference();

— All methods in interface must be public.

— Multiple interfaces can be implemented ~ class Rezegﬁgﬁfn;g;?eents rTemplate {
by using comma separation ° '

- . public function _ construct() {
{)nttegicenlgs%,ecgnzi? da(‘lecnot};{ STANT’ $this->reference = ‘dictionary’;
ut may \% }
implementing class

public function getReference() {
return $this->reference,;
}

protected function setProtectedReference($myReference) {
$this->reference = $myReference;
}

}

$rt = new Letter();
$reference = $rt->getReference();

echo ‘reference:’ . $reference;
?>

Output:
reference: dictionary

PHP 5.0 Exceptions

* Additional features with PHP 5. <?php
) . . function inverse($x) {
— Exceptions — throwing an exception if (1$x) {
to gracefully error out Whlle throw new Exception(‘Division by zero.’);
2
SV, |
continuing to execute the rest of the yelse {retum 1/$x;
script even after the error. }
* Notice how we still get ‘Hello }
World’ even after an exception try {
caused by ‘Division by Zero’. echo inverse(5) . “\n”;
. echo inverse(0) . “\n”; // trigger exception
— Exceptions can then be caught for y i (Exception $e) {
logglng, etc. echo ‘Caught exception: ‘, $e->getMessage(), “\n”;
}

// continue execution
echo ‘Hello World’;
?>

Output:

0.2

Caught exception: Division by zero.
Hello World

Finally, PHP 5.3 features

* Additional features with PHP 5.3
— Namespaces
— Late Static Bindings
— Jump labels (goto)
— Closures
— callStatic() and invoke()
— Class Constants
— Nowdoc syntax supported

— Use Heredocs to initialize static
variables and class properties

— Heredocs with double quotes

— Ternary operator shortcut

— HTTP status 200 to 399 = success
— Dynamic access to static methods
— Exception nesting

— mail() logging of sent email

Namespaces

<?php

° NameSpaCCS declare (encoding=‘UTF-8');

— Help create a new layer of code

namespace automobile;

encapsulation. |
. . class Automobile {
* Keep properties from colliding function setType($type) {
between areas of your code ! St _JRAEIREEE TS
* Only classes, interfaces, functions }
and constants are affected hamespace automobile\car:
— Anything that does not have a class Car {
namespace 1s considered in the function toyota() {
. echo “test drive\n”;
Global namespace (namespace = }

6‘39) }

— Namespace must be declared first car = new Car
¢) $car->toyotal();
(except ‘declare’ statement)

— Can define multiple namespaces in
the same file.

// OR you can use the namespace

$auto = new \automobile\car\Car;
$auto->toyota();

7>
Output:

test drive
test drive

Namespaces — cont.

* Namespaces — cont.

— You can define that something be
used in the “Global” namespace by
enclosing a non-labeled namespace
in {} brackets. (Note: if you have
multiple namespaces in the same
file they must all use this notation.)

— Use namespaces from within other
namespaces, along with aliasing

<?php
namespace automobile;

class Automobile {
function setType($type) {
echo _ NAMESPACE__ . “\n”;
}
}

namespace automobile\car;
use automobile as auto;

class Car {
function toyota() {
echo “test drive\n”;
}
}

namespace {

/lglobal code, for this to work the examples above would also
need to use bracketed syntax

}

$automobile = new auto\Automobile;
$automobile->setType(‘none’);
?7>

Output:
automobile

Late Static Bindings

Late Static Binding

— Stores the class name of the last
“non-forwarded call”.

<?php
class Automobile {
private function type() {
echo “Success!\n";

}

public function test() {
$this->type();
static::type();
}
}

class Car extends Automobile {
// empty
}

Class Truck extends Automobile {
private function type() {
// empty
}
}

$car = new Car;

$car->test();

$truck = new Truck;

$truck->test(); //fails because there is no test() in Truck
7>

Output:

Success!
Success!
Success!

Fatal error: Call to private method Truck::type() from context
‘Automobile’ In {file} on line n

Jump Labels (goto)

Jump Labels (goto)

— Used to jump to another section in
the program.

— Target 1s specified by a label
followed by a colon.

— Target must be within the same file
and context.

* Cannot jump out of a function or
method, and cannot jump into one.

— Cannot jump into any sort of loop
or switch structure, but may jump
out.

<?php
// some code here

goto a;
echo ‘Foo’;

// more code here
a:

echo ‘Bar’;
?>

Output:
Bar

Closures (Anonymous functions)

Closures (Anonymous functions)

Allows the creation of functions
which have no specific name.

Most useful as the value of callback
parameters.

Can be used as the value of a
variable.

Can inherit variables from the
parent scope. (Not the same as
using global variables)

<?php

class Cart {
protected $products = array();
const PRICE_SHIRT = 20.00;
const PRICE_SCARF = 4.00;

public function order() {
$this->products[‘shirt’] = 2;
$this->products[‘scarf’'] = 3;

}

public function getTotal($tax) {
$total = 0.00;

$callback = function ($quantity, $product) use ($tax, &$total)

$pricePerltem =

constant(_ CLASS . “::PRICE_" .
strtoupper($product));

$total += ($pricePerltem * $quantity) * ($tax +1.0);
I

array_walk($this->products, $callback);

return round($total, 2);

Nested Exceptions

* Nested Exceptions <?php , _
.. 1 cer. 2 class MyException extends Exception {}
— Now your criteria within a “try” can
also have another “try” nested class Test {
within, thus causing two levels of public function testing() {
failure to caught for further logging. try {

try {
throw new MyException(‘foo!’);
} catch (MyException $e) {
throw $e;
}
} catch (Exception $e) {
var_dump($e->getMessage());
}
}
}

$foo = new Test;
$foo->testing();
7>

Output:
String(4) “foo!”

New magic methods

* _ callStatic()
— Used during overloading. Gives

No code to go with this...
warning to enforce public visibility

and non-static declaration. yet. EXperlment on your

* Triggered when invoking
inaccessible methods in a static OWI1.
context.
* _ 1mvoke()

— Called when a script tries to call an
object as a function

* Nowdoc
— nowdoc 1s similar to heredoc, but

no parsing is done inside a nowdoc.

* Ideal for code snippets or large
blocks of text without the need for
escaping.

* Best used with static content.

— Uses the same <<< sequence, but
the following identifier is encosed
1n single quotes.

<?php
echo <<<‘EOT’

My name is “$name”. | am printing some
$foo->foo.

Now, | am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: /x41
EOT;

?>

Output:

My name is “$name”. | am printing some
$foo->foo.

Now, | am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: /x41

Heredoc changes

Heredoc

— heredoc can now initialize static
variables and class
properties/constants.

— Can now be declared (optional)
using double quotes,
complementing the nowdoc syntax
which uses single quotes.

<?php
// Static variables
function foo() {
static $bar = <<<“LABEL”
Nothing in here...
LABEL;

}

/I Class properties/constants
Class foo {

const BAR = <<<FOOBAR
Constant example
FOOBAR;

public $baz = <<<FOOBAR
Property example
FOOBAR

}

?>

Constants addition

* Constants addition <?php

— A constant may now be declared const TEST = ‘bar’;
outside a class using the ‘const’

keyword instead of ‘declare’. Function foo() {

echo ‘foo’:

}

foo();

echo TEST:

Ternary added shortcut

* (Constants added shortcut <?php

— Can now use ternary for simpler $test = true;
returns of evaluation.
// old way

— Instead of defining the ‘middle’ part s$todo = ($test ? ‘Go’ : Stop’);
of the operation we simply geta ‘1’
if the first expression is true.
Otherwise we receive what 1s 1n the
third part, as we used to.

echo $todo;

// added shortcut

/I if $test = true then we get a true flag, otherwise we get
the second expression as a result

$tada = ($test ?: ‘whatever’);

echo $tada;

?>

Output (true):
Gol

Output (false):
Stopwhatever

Questions and Resources

South Florida PHP Users Group

Adam Cul P http://www.Geekyboy.com

Email: adam@geekyboy.com

Resources:

http://php.net/manual/en/migration53.new-
features.php

	OOP and PHP 5.3
	Procedural? Really?
	OOP the basics
	PHP 4 revisit
	PHP 5.0 brought changes
	PHP 5.0 Abstraction
	PHP 5.0 Interfaces
	PHP 5.0 Exceptions
	Finally, PHP 5.3 features
	Namespaces
	Namespaces – cont.
	Late Static Bindings
	Jump Labels (goto)
	Closures (Anonymous functions)
	Nested Exceptions
	New magic methods
	Nowdoc
	Heredoc changes
	Constants addition
	Ternary added shortcut
	Questions and Resources

