Refactoring Legacy Code

By:
Adam Culp
Twitter: @adamculp

https://joind.in/13560

PHP 5.3 Certified

Consultant at Zend Technologies
Zend Certification Advisory Board
Organizer SoFloPHP (South Florida)
Organized SunshinePHP (Miami)
Long distance (ultra) runner

Judo Black Belt Instructor zend

CERTIFIED
ENGIMEER

/ SUNSHINEPHP

CONFERENCE

Refactoring Legacy Code

Fan of iteration

- Pretty much everything requires iteration to do well:

* Long distance running

« Judo

 Development

« Evading project managers
» Refactoring!

|'|:|I.|:|1'||'||'IJ|H. by nrhlﬁll ol F.llh':'"l“ {1d_.||.'lr|

Refactoring Legacy Code

* Modernizing

“Modernizing Legacy Applications in PHP” on LeanPub - by Paul M. Jones
- http://mlaphp.com

Modernizing Legacy
Applications in PHP

Paul M. Jones

Refactoring Legacy Code

== B s —m————

acy Code”

 What is “Leg

- Is there a coding standard for your project?

Refactoring Legacy Code

== B s —m————

s

acy Code”

 What is “Leg

- Is there a coding standard for your project?

- Is code using OOP?

Refactoring Legacy Code

== B s —m————

s

acy Code”

 What is “Leg
- Is there a coding standard for your project?

- Is code using OOP?

- Is Composer used in your project?

Refactoring Legacy Code

 What is “Legacy Code”
- Is there a coding standard for your project?
- Is code using OOP?

- Is Composer used in your project?

- Is the project using a framework?

Refactoring Legacy Code

 What is “Leg

— e T = T amoa ——aty o ——

s

acy Code”

- Is there a coding standard for your project?
- Is code using OOP?
- Is Composer used in your project?

- Is the project using a framework?

- Are you unit testing?

Refactoring Legacy Code

 What is “Leg

s

acy Code”

. el I'-"-"!','_‘-“"-—-_:._—-‘-‘-_ o ——

Is there a coding standard for your project?
Is code using OOP?

Is Composer used in your project?

Is the project using a framework?

Are you unit testing?

Does your project avoid NIH?

Refactoring Legacy Code

. What is “Legacy Code”

Is there a coding standard for your project?
Is code using OOP?

Is Composer used in your project?

Is the project using a framework?

Are you unit testing?

Does your project avoid NIH?

If you can answer “No” to any of these,
you may be creating “Legacy Code”!!!

Refactoring Legacy Code

 What is “refactoring”?

- “...process of changing a computer program’'s source code without
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

- No functionality added
- Code quality

PII A

Refactoring

Refactoring Legacy Code

« Two hats

- Adding Functionality Hat
- Refactoring Hat

- We add functionality, then refactor, then add more functionality ...

P &

<CODER> fﬁklk

Refactoring

Refactoring Legacy Code

 Then optimize
— Do not optimize while refactoring.

- Separate step.

- Refactoring is NOT optimizing.

Refactoring Legacy Code

 Source Control

- Refactor in branch

- Allows rollback

®
gll SUBVERSION

Refactoring Legacy Code

- = — e —

 Editor/IDE

- Makes searching easier

- Search within project

Zend Studio

php)

PhpStorm

2¢ NetBeans

Refactoring Legacy Code

i

L i

 Style Guide
- Framework Interop Group

e http://php-fig.org
* PSR

- Faster reading

- United team

www.php-fig.org

PHP Framework Interop Group

Refactoring Legacy Code

 Testing

- Consistent results
- Prevents breaks

- Speeds up development

-

PHPUnit

Refactoring Legacy Code

* Modernizing Steps

Autoloading
Consolidate Classes
Cleanup Globals
Replace “new”
Create Tests
Extract SQL

Extract Logic

Replace Remaining “Includes”

i T mml T e st -

Refactoring Legacy Code

- - - = -— O

* Autoloading

- Namespaces
- PSR-0

* Legacy code typically used long class names

- Usage = My_Long_Class_Name
- Translates to “/My/Long/Class/Name.php”
- Class = My_Long_Class_Name

* If not, then PSR-4

- Use My\Great\Namespace\Name
- Translates to /My/Great/Namespace/Name.php
- Class = Name

Refactoring Legacy Code

i - S P g

s

* Autoloading Approaches
- Approaches

* Global function
 Closure

« Static or Instance Method (preferred, if possible)
« _ autoload() - PHP v 5.0
- Need a central place for classes

Refactoring Legacy Code

- :ﬁ' == = i

 Consolidate Classes

— Move to one location

* Could be named “includes”, “classes”, “src”, “lib”, etc.

¥ = project-refactoring-legacy-code2
¥ 2 classes
¥ 2 Reflegcode
b] Autoloader.php
¥ 2 foo
» 2 bar
¥ 2 includes
> [B] setup.php
v 2 lib
¥ & sub
> [Auth.php
> [f] Role.php
> [8] User.php
» 18] index.php

Refactoring Legacy Code

= :ﬁ' = = = i

* Consolidate Classes Step 1

— Search for include statements

* (include, include_once, require, require_once)

[B] index.php &2

—

<?php

2 require 'includes/setup.php’;
3 require once 'lib/sub/User.php’;
4
3 /...
6
7 Suser = new User();
8
9 /...
3]
11 7=

* Consolidate Classes Step 2

Refactoring Legacy Code

¥ = project-refactoring-legacy-code2

¥ # classes
¥ & Reflegcode

> [f] Autoloader.php

¥ 2 foo
» 2 bar
¥ & includes
> [f] setup.php
¥ #lib
¥ 2 sub
» [£] Auth.php
> [F] Role.php
> [f] User.php
b 15 index.php

¥ .= project-refactoring-legacy-code2

¥ (# classes
¥ 2 Reflegcode

> [¢] Autoloader.php

> [User.php
¥ & foo
» 2 bar
¥ & includes
» [6] setup.php
¥ & |ib
¥ & sub
> [#] Auth.php
> [F] Role.php
b 9] index.php

Refactoring Legacy Code

- :ﬁ' == = i

* Consolidate Classes Step 3

- User class is nhow autoloaded, no more require_once.

7] index.php)

<?php
require 'includes/setup.php’;

=

i
// User class 1s now autoloaded
suser = new User();

ffo...

oW 00 = O R B L) R

73]

Refactoring Legacy Code

- s i -— O

* Consolidate Classes Repeat

— Search for more instances

Refactoring Legacy Code

e R

 Cleanup “Global” Dependencies Steps

1

2

3

Search for global reference

Move global calls to constructor

Convert global call to a constructor parameter
Update global call to a class

Instantiate new class and pass as parameter (Dl)

Repeat

Refactoring Legacy Code

* Global Cleanup Step 1

- Search for global reference

F] Example.php 22 [setup.php

1 <7php
2= class Example

3 1

public function fetchi()

4
5 {

6 global $db;

7 return $db->query(...);
8

9

e

}
5

73]

|El Example php | ®| setup.php &

<?php
// some setup code, then:
$db = new Db('hostname', 'username', 'password');

Refactoring Legacy Code

e Global Cleanup Step 2 & 3
- Move global call to constructor

- Pass values as properties

[5) Example.php 52

1 <?php
2= class Example
3
4 protected $db;
5
6= public function construct()
7 {
8 global $db;
9 $this-=db = %db;
18 }
11
‘128 public function fetch()
13 {
return $this->db->query(...);

Refactoring Legacy Code

* Global Cleanup Step 4

- Convert call to a constructor parameter

#| Example.php £3

.......... 1 "t:?php
2= class Example

3 |4

protected $db;

6= public function construct(Db $db)
{ $this->db = $db;
}
11= public function fetch()
@13 ¢ return $this->db->query(...);

14 1

Refactoring Legacy Code

e Global Cleanup Step 5

- Instantiate new class

- Inject as parameter (DI)

1| page_script.php

1 <7php
// a setup file that creates a %db variable
require 'includes/setup.php’;

rf ...

$example = new Example($db);
73]

00 =] On LN s LJ P

Refactoring Legacy Code

L i

* Global Cleanup

vy i

by

Repeat

- Look for more instances to clean up

Refactoring Legacy Code

» Steps to Replacing “new”
1 Search for “new”
2 Extract instantiation to constructor parameter. (if one time)

* Or extract block of creation code to new Factory class. (if repeated)
3 Update instantiation calls

4 Repeat

Refactoring Legacy Code

_ e . = . ;-—r-:s,-_-“l--—-. -:_: —afr _-.

« Replacing “new” Step 1 (Single)

- Before

F| ltemsGateway.php &2

1 <?php
2 class ItemsGateway

4 protected $db host;
5 protected $db user;
6 protected $db pass;
7 protected $db;

8

9 public function construct($db host, $db user, $db pass)
16 {

11 $this-=db host = $db host;

12 $this->db user = $db user;

13 $this->db pass = $db pass;

14

15 $this->db = new Db($this->db host, $this-=>db user, $this-=db pass);

Refactoring Legacy Code

-

« Replacing “new” Step 2 (Single)

B s - —

s F,

- Inject Db object into class constructor. (DI)

- No longer instantiating within class

7| ltemsGateway.php &2

1 <?php
2 class ItemsGateway

4 protected $db;
5

"""" 6 public function construct(Db $db)
7 {

8 $this->db = $db;

9 }

16 [l

Refactoring Legacy Code

Py = I, e e — e

« Replacing “new” (Multiple)

| ltemsGateway.php &3
1 <7php
2 class ItemsGateway
3 {
4 protected %db;
5
6 public function construct(Db $db)
7 {
8 $this-=db = $db;
9 }
18
11 public function selectAll()
12 {
13 $rows = $this-=db->query("SELECT * FROM items ORDER BY id");
14 $item collection = array();
15 foreach (%$rows as $row) {
16 $item collection[] = new Item($row);
17 }
18 return $item collection;

Refactoring Legacy Code

e T e e g T i

« Replacing “new” Step 3 (Multiple)
- Create factory

- Extract “new” call to new factory

°| l[temFactory.php &3

1 <7php
2= class ItemFactory

S public function newInstance(array $item data)

4
5 {

B return new Item($item data);
7

8

Refactoring Legacy Code

w” Step 4 (Multiple)

- Update instantiation calls

 Replacing “ne

°| page_script.php &3

'—I

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

H ...

// create a gateway
$items gateway = new ItemsGateway($db host, $db user, $db pass);

W0 00 =] On LN B) R

7> ©| page_script.php &3

=

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

// create a gateway with its dependencies
$db = new Db(%db host, $db user, %db pass);
$item factory = new ItemFactory;

$items gateway = new ItemsGateway($db, $item factory);
73]

W 00 =] O LA s L P

Refactoring Legacy Code

* Replacing “new” Step 4 (Multiple)
- Call to factory

protected $db;
protected $item factory;

public function ~_construct(Db $db, ItemFactory $item factory)

{
$this->db = $db;
$this->item factory = Sitem factory;
}
public function selectAll()
{

Srows = $this->db->query("SELECT * FROM items ORDER BY id");
$item collection = array();
foreach ($rows as Srow) {

$item collection[] = $this->item factory-=newInstance($row);

}

return $item collection;

Refactoring Legacy Code

_—— . s T A e e —aty, | it
| - o = :

 Replacing “new” Repeat

Refactoring Legacy Code

* Write Tests
- Code is fairly clean
- Write tests for entire application
- |If not testable, refactor

 Extract method

* Replace temp with query
« Etc.

Refactoring Legacy Code

Extract SQL
1 Search for SQL

2 Move statement and relevant logic to Gateway class
3 Create test for new class

4 Alter code to use new method

5 Repeat

Refactoring Legacy Code

 Extract Logic
1 Search for uses of Gateway class outside of Transaction classes
2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat

Refactoring Legacy Code

* Replace “includes”
— Search for left over includes

— If in current class

i+ Copy contents into file directly
. Refactor for: no globals, no 'new’, DI, return instead of output, no includes
- More often

i+ Copy contents of include as-is to new class method
. Replace with in-line instantiation
s Search for other uses of same, and update them as well
« Delete original include file, regression test
- Test, create new tests if needed

- Repeat

Refactoring Legacy Code

ey T T —

« Additional Possibilities
- Can now implement framework
- Leverage services

- Leverage events

- Use Composer

Refactoring Legacy Code

 Why refactor
— Less bugs

- Faster development

- More stable

- Easier onboarding

- Save $SS

Refactoring Legacy Code

« When/How to refactor

— Ask boss for time

“Leave it cleaner than you found it”

- Do it on your own, it makes YOUR life easier

Refactoring Legacy Code

 Convince the boss

- Three kinds of managers:
* Tech Savvy
e Quality Centric

e Time Driven

Refactoring Legacy Code

 Tech Savvy boss

- Lower cyclomatic complexity
- SOLID

- Separation of concerns

- MVC/Framework

- Less bugs

- Easier onboarding

Refactoring Legacy Code

* Quality Centric boss

- = — _

Code quality
Tests
Happier customers

Less bugs

Refactoring Legacy Code

* Time driven boss

- Faster feature delivery
- Higher productivity - less time reading
- Faster onboarding
- Less testing time

- Less debugging

Refactoring Legacy Code

e e

* Concluding Th

- P "-r-l:,-_-“--—-.;_.‘.:_ T ——

s

oughts

— Do not refactor a broken application
- Have tests in place prior to refactor

e Unit tests or
* Functional tests or
* Manual tests

— Do things in small steps

- Love iteration!

* Thank you!

- Please rate at: https://joind.in/13560

Adam Culp
http://www.geekyboy.com

http://RunGeekRadio.com

Twitter @adamculp

Questions?

	Intro
	About me
	Iteration
	Modernizing Legacy Applications Book
	Slide 7
	What is "Legacy Code"
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Refactoring hat
	Two hats
	Optimization Step
	Source Control
	Editor/IDE
	Coding Style
	Testing
	Autoloading Standards
	Slide 22
	Autoloading Approaches
	Consolidate Classes
	Consolidate Classes Step 1
	Consolidate Classes Step 2
	Consolidate Classes Step 3
	Repeat Class Consolidation
	Global Dependencies
	Global Cleanup Step 1
	Global Cleanup Step 2 & 3
	Global Cleanup Step 4
	Global Cleanup Step 5
	Global Cleanup Repeat
	Replace "new"
	Replace "new" Step 1 (single)
	Replace "new" Step 2 (single)
	Replace "new" (multi)
	Replace "new" Step 3 (multi)
	Replace "new" Step 4a (multi)
	Replace "new" Step 4b (multi)
	Replace "new" Repeat
	Write Tests
	Extract SQL
	Extract Logic
	Replace "includes"
	Additional Possibilities
	Why Refactor
	When/How to refactor
	Convince the boss
	Tech savvy boss
	Quality centric boss
	Time driven boss
	Conclusion
	Thank you

