
SCALE WITH NSQ
a realtime distributed messaging platform

@GeorgiCodes

Georgi Knox - Software Engineer @ Bitly
Berlin Buzzwords June 2, 2015

G’DAY, MY NAME IS GEORGI
@GeorgiCodes

WHAT IS BITLY?

•Popular URL shortener

•analytics around how and where
those links were shared

•10 billion clicks per month

•8000 requests per second

WHAT IS NSQ?
• At version: 0.3.5

•Open-sourced by Bitly

•written in Go

•19 client libraries, 11 languages

• > 3 years in production

GROWING PAINS

•single host

•synchronous writes

•new feature: track metrics API metrics

interweb

1 23

MESSAGING PATTERNS

PSProducer

ConsumerA

ConsumerB

BROADCAST

de-coupling of producers and consumers
multicast: message copied and delivered to n consumers

m1m1m2m2

queueProducer

ConsumerA

ConsumerA

m1

horizontal scalability

DISTRIBUTION

m2m3

queueProducer

ConsumerA

ConsumerA

fault tolerance

FAILURE

m2m1m3

queueProducer

ConsumerA

ConsumerA

EVEN MORE FAILURE

when all the things fail

m2m3m1

NSQD

TOPICS AND CHANNELS

•a topic is a distinct stream of
messages

•a topic has one or more
channels

•topics and channels are created
at runtime

•messages are pushed to
consumers

combine pubsub, distribution, and queueing

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

AAABBB

UNDER THE HOOD
•topics and channels are independent

•configurable high water mark 
(disk persistence)

DiskQueue

In-Memory

goroutine

Input
Chan

Output
Chan

OUR SIMPLE EXAMPLE + NSQD

•introduce nsqd

•de-coupled production and
consumption of data

•PUB locally to nsqd via HTTP

•perform work async

•co-locate everything (silo)

API

nsqd “metrics”
channel

“api_event”
topic

metrics
consumer

consumer

SCALE HORIZONTALLY

API

nsqd “metrics”
channel

API

nsqd

metrics

consumer

consumer

consumer

consumer

“api_event”
topic

“api_event”
topic

“metrics”
channel

… …

NSQLOOKUPD

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

PUBLISH

REGISTER

DISCOVER

SUBSCRIBE

TYPICAL NSQ CLUSTER

•enable distributed and
decentralized topologies

•no centralized broker

•nsqlookupd instances
are independent (no
coordinatation)

OUR SIMPLE EXAMPLE + NSQLOOKUPD

•introduce nsqlookupd

•discoverability

•producers and consumers  
come and go

•other services can discover
and subscribe to this topic

API

nsqd “metrics”
channel

“api_event”
topic

API

nsqd “metrics”
channel

“api_event”
topic

2 - connect to all discovered  
producers

nsq_to_file nsq_to_file

nsqlookupd

TCP

nsqlookupd

TCP“archive”
channel

1 - query nsqlookupd
for topic “api_event”HTTP

GUARANTEES

•messages are delivered at least once

•messages are not durable (by default)

•messages received are un-ordered

•consumers eventually find all topic producers

TOPIC & CHANNEL PAUSING

“clicks”

“metrics”

“reporting”

“achrive”

paused

paused

FFF
C  
A  
C  
H  
E

DB

“archive”

AAABBBC DCC DDGGG

NSQ ADMIN

•#ephemeral channels

THANK-YOU!  
@GeorgiCodes

big thanks to @jehiah and @imsnakes
(authors of NSQ)

