
redis cluster
or: distributed systems are hard

Jan-Erik Rediger
28. Mai 2015



who am i?

Hi, I’m Jan-Erik

� Student of Computer Science, RWTH
� first Redis-related project: 2010 (an Erlang client)
� Maintainer of

� try.redis.io
� hiredis
� hiredis-rb, hiredis-py, hiredis-node

https://github.com/badboy/redis.erl
http://try.redis.io
https://github.com/redis/hiredis
https://rubygems.org/gems/hiredis
https://pypi.python.org/pypi/hiredis/
https://www.npmjs.com/package/hiredis


redis



redis

Redis is an open source, BSD licensed,
advanced key-value cache and store. It is
often referred to as a data structure server
since keys can contain strings, hashes, lists, sets,
sorted sets, bitmaps and hyperloglogs.



redis

SET redis rocks

HSET meetup.42 name PHPUGDUS

SADD meetups-in-dus 42:PHPUGDUS

ZADD meetups-in-nrw 20150628 PHPUGDUS

LPUSH trivago "meetup host"



limits

Must fit into RAM

No redundancy

Single-threaded



limits

Must fit into RAM

No redundancy

Single-threaded



limits

Must fit into RAM

No redundancy

Single-threaded



overcoming limits

� Sharding
� Split data set across nodes
� e.g. via Twemproxy or Codis

� Replication
� Failover for HA
� Sentinel or another system
� Scale reads to more instances



overcoming limits

� Sharding
� Split data set across nodes
� e.g. via Twemproxy or Codis

� Replication
� Failover for HA
� Sentinel or another system
� Scale reads to more instances





redis cluster



redis cluster

� It’s still Redis

� must be fast
� must scale
� must be simple to use
� must give some guarantees

� but it’s a Distributed System



redis cluster

� It’s still Redis
� must be fast

� must scale
� must be simple to use
� must give some guarantees

� but it’s a Distributed System



redis cluster

� It’s still Redis
� must be fast
� must scale

� must be simple to use
� must give some guarantees

� but it’s a Distributed System



redis cluster

� It’s still Redis
� must be fast
� must scale
� must be simple to use

� must give some guarantees

� but it’s a Distributed System



redis cluster

� It’s still Redis
� must be fast
� must scale
� must be simple to use
� must give some guarantees

� but it’s a Distributed System



redis cluster

� It’s still Redis
� must be fast
� must scale
� must be simple to use
� must give some guarantees

� but it’s a Distributed System



cap - pick two



cp - consistent & partition tolerant

� Higher Latency
� Wait for majority of

ACKs



ap - available & partition tolerant

� Eventual Consistency
� might require merges



so what is it?



sharding + replication



replication: asynchronous



full mesh

� Heartbeats
� Gossip
� Failover
� Config update



redirections



slot configuration

� Key space split into 16384 slots
� Every node serves a subset of the slots
� Every node knows the node�slot mapping



single-key operations

> GET redis
1) "rocks"

> GET kjdopiqh
(error) MOVED 12182 127.0.0.1:7002



multi-key operations

� All keys in same slot: it’s fine

> MGET foo10 foo5406
1) "hello"
1) "world"



multi-key operations

� Keys in different slots: sorry, not possible

> MGET foo bar
(error) CROSSSLOT Keys in request don't hash

to the same slot



multi-key operations with hash tags

� Ensure keys map to the same slot

> MGET {foo}.meetup {foo}.city
1) "PHPUG"
2) "Düsseldorf"



failure detection



node times out: pfail



all remaining nodes see pfail



pfail → fail



force fail, trigger failover



failover



actual failover



actual failover



is it consistent?

Eventually…

� Last Failover wins
� Mechanisms to avoid unbound data loss



is it consistent?

Eventually…

� Last Failover wins
� Mechanisms to avoid unbound data loss



is it consistent?

Eventually…

� Last Failover wins
� Mechanisms to avoid unbound data loss



failure modes



failure: crashes



failure: network split



failure: network split



creating a cluster



configuration

port 7001
cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000



let them meet

CLUSTER MEET 127.0.0.1 7001

* on every node ;)



more convenient

./redis-trib.rb create --replicas 1 \
127.0.0.1:7000 127.0.0.1:7001 \
127.0.0.1:7002 127.0.0.1:7003 \
127.0.0.1:7004 127.0.0.1:7005



more commands you want to know

CLUSTER ADDSLOTS 42 43 44

CLUSTER SETSLOT 42 NODE ff7831dfe

CLUSTER SETSLOT 42 MIGRATING ff7831dfe

CLUSTER SETSLOT 42 IMPORTING ff7831dfe



and some more

CLUSTER NODES

CLUSTER FAILOVER

CLUSTER REPLICATE ff7831dfe



all cluster commands

redis.io/commands#cluster

http://redis.io/commands#cluster


nodes.conf

ff7831dfe7fc73f741d5c4663a8020e654f88f22
127.0.0.1:7001 myself,master - 0 0 1
connected 0-5460

94f5710dab37058784824dc9d2ddb27a693f1336
127.0.0.1:7013 slave

a46ff091f49bd28149594dfd2272ebb3aedcdd59 0
1415873239710 6 connected

vars currentEpoch 6 lastVoteEpoch 0



available clients

� Ruby: redic-cluster
� Ruby: redis-rb-cluster
� Python: redis-py-cluster
� PHP: Predis
� Java: Jedis
� JavaScript: thunk-redis
� .NET: StackExchange.Redis

https://github.com/inkel/redic-cluster
https://github.com/antirez/redis-rb-cluster
https://github.com/Grokzen/redis-py-cluster
https://github.com/nrk/predis
https://github.com/xetorthio/jedis
https://github.com/thunks/thunk-redis
https://github.com/StackExchange/StackExchange.Redis


sources

� redis.io - official site & documentation
� cluster-spec - official spec docu
� cluster-tutorial - a tutorial
� mattsta/redis-cluster-playground - easy to play

around with cluster

http://redis.io
http://redis.io/topics/cluster-spec
http://redis.io/topics/cluster-tutorial
https://github.com/mattsta/redis-cluster-playground




the end

Get the slides here:

http://slidr.io/badboy/redis-cluster

Reach me on Twitter: @badboy_

Jan-Erik Rediger - 28. Mai 2015 - PHPUGDUS

http://slidr.io/badboy/redis-cluster
https://twitter.com/badboy_

	Redis Cluster
	So what is it?
	Failure detection
	Failover
	Failure Modes
	Creating a Cluster

