
CACHING STRATEGIES

BEN RAMSEY

I’m a web craftsman, author, and speaker.

I build a platform for professional

photographers at ShootProof. I enjoy

APIs, open source software, organizing

user groups, good beer, and spending

time with my family. Nashville, TN is my

home.

HI, I’M BEN.

virtPHP

✤ Books
✤ php|architect’s Zend PHP 5

Certification Study Guide
✤ PHP5 Unleashed

✤ Nashville PHP & Atlanta PHP
✤ array_column()
✤ Rhumsaa\Uuid library
✤ virtPHP
✤ PHP League OAuth 2.0 Client
✤ Nashville Code User Group Leadership

https://www.shootproof.com/
http://virtphp.org/

WHAT IS A CACHE?

A store of things that may be required in the

future, which can be retrieved rapidly, protected,

or hidden in some way.

A CACHE IS…

✤ Animals store food in caches

✤ Journalists call a stockpile of hidden weapons a 

“weapons cache”

✤ Buried treasure is a cache

✤ Geocachers hunt for caches

✤ Computers and applications store data in caches

A store of things that may be required in the

future, which can be retrieved rapidly, protected,

or hidden in some way.

A CACHE IS…

A fast temporary storage where recently or

frequently used information is stored to avoid

having to reload it from a slower storage medium.

IN COMPUTING, A CACHE IS…

✤ Reduce the number of queries made to a database

✤ Reduce the number of requests made to services

✤ Reduce the time spent computing data

✤ Reduce filesystem access

✤ What else?

A fast temporary storage where recently or

frequently used information is stored to avoid

having to reload it from a slower storage medium.

IN COMPUTING, A CACHE IS…

Caching from the perspective of a web

application.

OUR FOCUS…

TYPES OF CACHE

✤ File system

✤ Object cache

✤ Shared memory

✤ Database

✤ Opcode cache

✤ Web cache

Perhaps the simplest way to cache web

application data: store the generated

data in local files.

FILESYSTEM CACHE

!

Generate some HTML content, store it to

a local file.

CACHE HTML PAGES

!
$html = '';

// Lots of code to build the HTML
// string or page.

file_put_contents('cache.html', $html);

Retrieve the pre-generated contents, if available.

CACHE HTML PAGES

!

$html = file_get_contents('cache.html')

if ($html === false) {
 $html = '';
 // Generate your HTML content
 file_put_contents('cache.html', $html);
}

echo $html;

Store populated data structures on the

local filesystem.

CACHE DATA STRUCTURES

!
// Store a configuration array
// or large recordset of static data

if (file_exists('cache.php')) {
 include 'cache.php';
}

if (!isset($largeArray)) {

 $largeArray = fooBuildData();

 $cache = "<?php\n\n";
 $cache .= '$largeArray = ';
 $cache .= var_export($largeArray, true);
 $cache .= ";\n";

 file_put_contents('cache.php', $cache);

}

The created cache.php file now contains

something that looks like this:

CACHE.PHP

!
<?php

$largeArray = array (
 'db_name' => 'foo_database',
 'db_user' => 'my_username',
 'db_password' => 'my_password',
 'db_host' => 'localhost',
 'db_charset' => 'utf8',
);

There are many other approaches to filesystem caching, but they’re all

fundamentally the same.

OTHER APPROACHES

!

✤ Store generated data to a file on disk.

✤ If available, read from that file on disk, rather than

generating the data.

✤ If not available, generate the data and store it.

✤ That's how most caching works!

OBJECT CACHE

"

A variety of key-value arbitrary data

stores exist.

Memcached is a distributed memory

object caching system designed to store

small chunks of arbitrary data.

MEMCACHED

"
✤ Simple key/value dictionary

✤ Runs as a daemon

✤ Everything is in memory

✤ Simple protocol for access

over TCP and UDP

✤ Designed to run in a

distributed pool of instances

✤ Instances are not aware of

each other; client drivers

manage the pool

Pecl/memcached is one of two PHP extensions for communicating with a

pool of memcached servers. pecl.php.net/package/memcached

PECL/MEMCACHED

"

$memcache = new Memcached();

$memcache->addServers([
 ['10.35.24.1', '11211'],
 ['10.35.24.2', '11211'],
 ['10.35.24.3', '11211'],
]);

http://pecl.php.net/package/memcached

Use a key to set and retrieve data from a pool of memcached servers.

GET AND SET WITH PECL/MEMCACHED

"

$book = $memcache->get('9780764596346');

if ($book === false) {
 if ($memcache->getResultCode() == Memcached::RES_NOTFOUND) {
 $book = Book::getByIsbn('9780764596346');
 $memcache->set($book->getIsbn(), $book);
 }
}

Redis is another type of key-value data

store, with some key differences.

REDIS

"
✤ Supports strings and other

data types:
✤ Lists

✤ Sets

✤ Sorted sets

✤ Hashes

✤ Persistence

✤ Replication (master-slave)

✤ Client-level clustering but

built-in clustering in beta

Predis is perhaps the most popular and full-featured PHP client library for

Redis. github.com/nrk/predis

PREDIS

"

$redis = new Predis\Client([
 'tcp://10.35.24.1:6379?alias=first-node',
 'tcp://10.35.24.2:6379?alias=second-node',
 'tcp://10.35.24.3:6379?alias=third-node',
]);

https://github.com/nrk/predis

In it’s simplest form, Predis behaves similar to the memcached client.

However, it can perform complex operations, so check the docs.

GET AND SET WITH PREDIS

"

$pageData = $redis->get('homePageData');

if (!$pageData) {
 if (!$redis->exists('homePageData')) {
 $pageData = getHomePageData();
 $redis->set('homePageData', $pageData);
 }
}

$redis->hmset('car', [
 'make' => 'Honda',
 'model' => 'Civic',
 'year' => 2008,
 'license number' => 'PHP ROX',
 'years owned' => 1,
]);

echo $redis->hget('car', 'license number');

$redis->hdel('car', 'license number');

$redis->hincrby('car', 'years owned', 1);

$redis->hset('car', 'year', 2010);

var_dump($redis->hgetall('car'));

SHARED MEMORY CACHE

#

Shared memory is often a faster, more

efficient alternative to the filesystem for

caching local data to be shared by

processes.

If your PHP has been built with --enable-

shmop, then you may use the shmop_*

functions to interact with shared

memory.

php.net/shmop

SHMOP

#
$id = shmop_open(123, 'c', 0644, 1000000);

$bytes = shmop_write($id, 'Hello', 0);

$data = shmop_read($id, 0, $bytes);

shmop_close($id);

http://php.net/shmop

You will need to keep track of where

everything lives in your shared memory

block, though.

Shmop is not a key-value store.

MAINTAINING SHMOP

#

$data = shmop_read($id, 100, 3);

var_dump($data); // string(3) ""

// "\u0000\u0000\u0000"

If your PHP has been built with --enable-

sysvshm, then you may use the shm_*

functions to interact with shared

memory.

php.net/sem

SYSTEM V SHARED MEMORY

#
$config = [1, 2, 3, 4];

$shm = shm_attach(123, 1000000, 0644);

shm_put_var($shm, 42, $config);

$config = shm_get_var($shm, 42);

http://php.net/sem

Many Linux systems these days

automatically provide RAM disk mounted

at /dev/shm. You may write to this in the

same way you write to the filesystem,

but it's all in memory.

/DEV/SHM

#
$configFile = '/dev/shm/config.php';

if (file_exists($configFile)) {
 include $configFile;
}

if (!isset($config)) {

 $config = getConfiguration();

 $cache = "<?php\n\n";
 $cache .= '$config = ';
 $cache .= var_export($config, true);
 $cache .= ";\n";

 file_put_contents($configFile, $cache);

}

DATABASE CACHE



Databases often have their own built-in

caching mechanisms, and sometimes

it’s useful to generate your own views.

The query cache stores the SELECT

statement together with the results. It

returns these results for identical

queries received later.

QUERY CACHE


mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can maintain the MySQL Query

Cache with these commands.

MAINTENANCE


mysql> FLUSH QUERY CACHE;

mysql> RESET QUERY CACHE;

mysql> SHOW STATUS LIKE 'Qcache%';

mysql> SHOW VARIABLES LIKE 'query_cache_%';

Use Qcache_lowmem_prunes to

determine how much memory to

allocate to the query cache.

CHANGE THE CACHE SIZE


mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

Changing the cache type can affect what

happens by default to your SELECT

statements.

SET THE CACHE TYPE



mysql> SET GLOBAL query_cache_type = OFF;

mysql> SET GLOBAL query_cache_type = ON;

mysql> SET GLOBAL query_cache_type = DEMAND;

Depending on the cache type you’ve selected, you may choose to cache

or not to cache a specific query.

TO CACHE OR NOT TO CACHE



SELECT SQL_CACHE id, name FROM customer;

SELECT SQL_NO_CACHE id, name FROM customer;

Sometimes queries with expensive joins

need to be run beforehand, storing the

results for later retrieval.

MATERIALIZED VIEWS


✤ Supported natively in Oracle

and PostgreSQL

✤ Standard MySQL views do not

solve this problem

✤ Triggers, stored procedures,

and application code may be

used to generate materialized

views

✤ Simply a denormalized set of

results, useful for fast queries

OPCODE CACHE

%

An opcode cache is a place to store

precompiled script bytecode to

eliminate the need to parse scripts on

each request.

The OPcache extension is bundled with

PHP 5.5.0 and later. It is also available as

an extension for PHP 5.2, 5.3, and 5.4. It

is recommended over the older APC

extension, which performed a similar

function.

php.net/opcache

OPCACHE

%

// php.ini configuration

opcache.enable = "1"
opcache.memory_consumption = "64"
opcache.validate_timestamps = "0"

http://php.net/opcache

OPCache comes with some useful

functions that allow you to manage the

scripts that have been cached.

OPCACHE FUNCTIONS

%
opcache_compile_file($scriptPath)

opcache_get_configuration()

opcache_get_status()

opcache_invalidate($scriptPath)

opcache_reset()

WEB CACHE

&

A web cache stores whole web objects,

such as HTML pages, style sheets,

JavaScript, and images.

A reverse proxy cache retrieves

resources on behalf of a client from one

or more servers and caches them at the

proxy, usually according to cache control

rules and expiration headers.

Sometimes called “web accelerators.”

REVERSE PROXY CACHE

&
The Internet

Proxy

Web Server

There are many tools to help set up or

use reverse proxy caches.

EXAMPLES

&
✤ Varnish Cache

✤ NGINX Content Caching

✤ Apache Traffic Server

✤ Squid

✤ Various CDNs provide this as

part of their services

https://www.varnish-cache.org/
http://nginx.com/resources/admin-guide/caching/
http://trafficserver.apache.org/
http://www.squid-cache.org/

A CDN is a large distributed system of

servers deployed in multiple data

centers across the globe, with the

purpose of delivering data from the

“edges” to speed up delivery of content

to users near those edge locations.

CONTENT DELIVERY NETWORK (CDN)

&
✤ Akamai Technologies

✤ Limelight Networks

✤ Level 3 Communications

✤ Amazon CloudFront

✤ Windows Azure CDN

✤ CloudFlare

CACHE ALL THE

THINGS!

THANK YOU. ANY QUESTIONS?

benramsey.com

Caching Strategies

Copyright © 2015 Ben Ramsey.

This work is licensed under Creative Commons Attribution-

ShareAlike 4.0 International. For uses not covered under this

license, please contact the author.
&

' @ramsey

(github.com/ramsey

) ben@benramsey.com

If you want to talk more, feel free to

contact me.

Ramsey, Ben. “Caching Strategies.” Nashville PHP User Group. iostudio, Nashville.

13 Jan. 2015. Conference presentation.

This presentation was created using Keynote. The design was inspired by the

Catalyst web theme created by Pixelarity. The text is set in Open Sans. The source

code is set in Ubuntu Mono. The iconography is provided by Font Awesome.

All photographs are used by permission under a Creative Commons license.

Please refer to the Photo Credits slide for more information.

http://benramsey.com
http://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/ramsey
http://github.com/ramsey
mailto:ben@benramsey.com?subject=Your%20Caching%20Strategies%20Talk%20at%20Nashville%20PHP%20January%202014
http://pixelarity.com/catalyst
http://www.google.com/fonts/specimen/Open+Sans
http://font.ubuntu.com/
http://fontawesome.io/

PHOTO CREDITS

1. “Lucky Loonie” by Sharon Drummond, CC BY-NC-SA 2.0

2. “Forex Money for Exchange in Currency Bank” by epSos.de, CC BY 2.0

3. “Cash Register” by Steve Snodgrass, CC BY 2.0

4. “Euro Note Currency” by www.TheEnvironmentalBlog.org, CC BY-NC-ND 2.0

5. “Various Currencies” by Bradley Wells, CC BY-NC-SA 2.0

1

2

3

4

5

https://www.flickr.com/photos/dolmansaxlil/6711650765
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/epsos/8463683689
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/stevensnodgrass/4034636727
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/environmentblog/7183015604
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/bdwells1986/8346704065
https://creativecommons.org/licenses/by-nc-sa/2.0/

