
WHAT IS A CONTAINER?

Antonis Kalipetis
@akalipetis



About Antonis
Docker Captain and Docker Certified Associate

Python lover and developer

Senior Software Engineer, e-food.gr



About 2hog
We teach the lessons we have learnt the hard way in 
production.

Consulting, training and contracting services on containers, 
APIs and infrastructure



Why should I care about 
containers?



Why should I care about containers?
A way to package and distribute applications

A way to manage compute resources

A way to ship software



Containers 
VS

VMs



Virtual Machines vs. Containers?
They should co-exist. We should run N Containers in M 
Virtual Machines (N > M).

Imagine a Virtual Machine as a multi-floor building and a 
Container as a rented flat.

Virtual Machines provide deep isolation, so they are heavy 
and not versatile

Containers are fast and lightweight



Containers are a set of 
kernel tools and 
features that jail and 
limit a process based on 
our needs.



What is a Container? (in a bit more details)
It’s a process

Isolated in it’s own world, using namespaces

With limited resources, using cgroups



A namespace wraps a global system resource in an abstraction 
that makes it appear to the processes within the namespace 
that they have their own isolated instance of the global 
resource. Changes to the global resource are visible to 
other processes that are members of the namespace, but are 
invisible to other processes. One use of namespaces is to 
implement containers.

The Linux man-pages project:
http://man7.org/linux/man-pages/man7/namespaces.7.html

Namespaces



Wikipedia:
https://en.wikipedia.org/wiki/Cgroups

cgroups (abbreviated from control groups) is a Linux kernel 
feature that limits, accounts for, and isolates the resource 
usage (CPU, memory, disk I/O, network, etc.) of a collection 
of processes.

cgroups



docker run -it alpine sh

whoami
uname -a
top
cat /etc/os-release
exit

Let’s play a bit with containers



The Alpine image was pulled

A new container (aka a process) was started using that image

The process was isolated is its own namespace

A TTY was opened for us, so we could run commands

What did just happen?



A container can have a different operating system than the 
host machine

A container cannot have a different kernel than the host 
machine — they all share the same kernel after all!

Let's see the differences



Copy on Write file system
Software Defined Networking
Storage management
Built-in Orchestration

Docker on top of 
containers



Docker made it easy for 
you and me to use 
containers



The magic of CoW file systems
Image layers can be reused, reducing disk space and download 
time

Every Dockerfile command creates a new layer

Layers can be cached, reducing build times if the files have 
not changed

Containers can start blazing fast, because they just create 
a writable layer and don't need to copy files



The container best-practice list
Containers should be considered ephemeral

The container should be single-purposed program (e.g. avoid 
using supervisord)

The image should be lightweight and slim

Configuration should be made by the environment, with sane 
defaults

Orchestration should be carried out by an external too



Questions?



Thanks!
Antonis Kalipetis

@akalipetis


