
Git Essentials [Intro]

Haggai Philip Zagury,
 Q1 2013



whoami

Haggai Philip Zagury
CM / DevOps Engineer
Over 5 years of CM/ALM/DevOps 

expertise

“I am a member of Tikal's ALM group. 
With over 12 members, we meet, share, 

contribute and code together on a bi-weekly 
basis. “



We help companies build, deliver, 
deploy, manage and optimize their products. 

JAVA JS RoR.NETALM

“Today we are SURE that we made the right decision, 
choosing Tikal”

Guy Ben-Porat - Development Manager “ExLibris”



Tikal by Numbers

“Actions speak louder than words”
Tikal's motto 

1600+ 
Community 

Members 

150+
Blog Posts 
Last Year 

460+
Meet up

Members

100+
Projects

Last Year

90+
Tikal’s 

Experts Team 

12+ 
Years old



Agenda

● Some history ...
● Dvcs .vs Cvcs
● Installing Git
● Everyday Git Workflow
● Git Internals
● Branching & Tagging
● Merging
● Remotes
● Extra's [on a Free time basis]





History

Linus Torvald - hated(s) 
almost any VCS out there ...
In 2005 after being blown 
by Bitkeeper he started his 
own VCS project !

(like the history of unix=>linux)
source : http://finland.fi/public/default.aspx?contentid=251229&contentlan=2&culture=en-US

http://finland.fi/public/default.aspx?contentid=251229&contentlan=2&culture=en-US


The rest is history ...

source: http://git-scm.com/

http://git-scm.com/


@bout 

Git is a free and open source distributed version 

control system designed to handle everything from 
small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. 
It outclasses SCM tools like Subversion, CVS, Perforce, and ClearCase 
with features like cheap local branching, convenient staging areas, and multiple 
workflows.

source: git-scm.org

http://git-scm.com/


Dvcs .vs Cvcs



DVCS key concepts

● Everything is done locally
○ check-in / checkout / commit / branch / merge

● Collaboration via repository sync
● Peer-to-Peer approach (All repo are equal).
● Change & Share [ vs. commit / merge 

commit ... ]
● Branch & Merge - then share
● Control your History [ commit history ]



Dvcs vs. Cvcs

Distributed Centralized



Dvcs vs. Cvcs

Distributed Centralized

1 "master" repositoryAll repos are created equal

http://1.bp.blogspot.com/-IMpyLY11UEY/Tvi4V8r_WdI/AAAAAAAAFl8/_NoIeIguvBs/s1600/logo-svnX.png


Dvcs vs. Cvcs

Distributed - pros

● Extremely fast because the tool only needs to access the local hard 
drive

● Commits are local without anyone else seeing them. when you are 
ready to share => share

● You can work offline ! [ no internet / vpn etc ]
● Share between developers before sharing with everyone

DVCS Can do everything a Centralized repository 
can do and much more ...

cons

● large binary sync might take 
a lot of disk space

● Initial sync will take longer 
for all history to download



Installing & Configuring Git



Oh well, If you can't beat them join them ...



Getting git [installing]

Install Git
○ From source :(
○ From your favorite package manager / Installer
○ And there are many ports / front-ends out there

PLEASE NOTE: I will be covering Git from the Command Line - each 
of the "clients" mentioned above implement the exact same 
commands, so once you know the CLI you know them all !

http://sourceforge.net/projects/gitextensions/
https://code.google.com/p/tortoisegit/downloads/list

http://windows.github.com/

http://sourceforge.net/projects/gitextensions/
http://sourceforge.net/projects/gitextensions/
https://code.google.com/p/tortoisegit/downloads/list
https://code.google.com/p/tortoisegit/downloads/list
http://windows.github.com/
http://windows.github.com/


Configure your environment

$> git config user.name "Haggai Philip Zagury"

$> git config user.email "hagzag@tikalk.com"

$> git config --global user.name "Haggai Philip Zagury"

$> git config --global user.email "hagzag@tikalk.com"

Per repo config - stored in your_repo./git/config

Configure all your repositories [ --global ] 
- stored in ~/.gitconfig  or $USER/.gitconfig on windows

[user]

name = Haggai Philip Zagury

email = hagzag@tikalk.com

Results in:

3 /etc/gitconfig (system wide)

2 ~/.gitconfig (user all repos)

1 git_repo/.git/.config (repo)

     git config http://git-scm.com/docs/git-config
git config --list
git config --global core.editor vim

http://git-scm.com/docs/git-config


Ignoring Files

● Create a .gitignore at the root 
of your git repository.

● Create a .gitignore at any 
directory level - the deeper 
the stronger.

● .git/info/exclude
● git config core.excludesfile

git config --global core.excludesfile ~/.gitignore



Everyday Git Workflow



Creating a repository

● Bob is a developer ...
● Starting a new project on his 

personal laptop

~/ $> cd ~/Projects/git/git_intro/

~/Projects/git/git_intro/ $> git init
Initialized empty Git repository in /home/hagzag/Projects/git/git_intro/.git/
~/Projects/git/git_intro/(master) $> 

     git init http://git-scm.com/docs/git-init.html

http://git-scm.com/docs/git-init.html


Cloning a repository

● Cloning an existing repository

● git clone repo_url dest_dir  would yield the content into dest_dir

$> git clone git@github.com:jenkinsci/tikal-multijob-plugin.git
Cloning into 'tikal-multijob-plugin'...
remote: Counting objects: 1872, done.
remote: Compressing objects: 100% (661/661), done.
remote: Total 1872 (delta 601), reused 1745 (delta 476)
Receiving objects: 100% (1872/1872), 199.15 KiB | 195 KiB/s, done.
Resolving deltas: 100% (601/601), done.

     git clone http://git-scm.com/docs/git-clone

http://git-scm.com/docs/git-clone


Getting help

~/ $> git help
usage: git [--version] [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
           [-p|--paginate|--no-pager] [--no-replace-objects] [--bare]
           [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
           [-c name=value] [--help]
           <command> [<args>]

The most commonly used git commands are:
   add        Add file contents to the index
   bisect     Find by binary search the change that introduced a bug
   branch     List, create, or delete branches

See 'git help <command>' for more information on a specific command.
~/ $> git help init
~/ $> git help config
~/ $> git help commit
~/ $> git help branch

     git help http://git-scm.com/docs/git-help

http://git-scm.com/docs/git-help


Working with files
Creating our first file

File status ?

~/Projects/git/git_intro/(master) $> echo -e "=== README FILE for git_into ===\n Version 1.0" > README 

~/Projects/git/git_intro/(master) $> git status
# On branch master
#
# Initial commit
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# README
nothing added to commit but untracked files present (use "git add" to track)

     git status http://git-scm.com/docs/git-status

http://git-scm.com/docs/git-status


File status lifecycle

A file is Untracked until it is added with git add
Unmodified as long as it's committed and its SHA-1 is equal to the checksum it had last time it was 
committed. (The SHA-1 used by git is not used only for file integrity - but as a hash function) 

Modified once its SHA-1 differs from previous commit.

Staged once it was "git added"

Untracked Unmodified Modified Staged

create a file

remove a file

edit

add

commit



File status lifecycle - add / status

Working directory Index / Staging Area
(a.k.a cache) Repository

Adding our README file will moving from the untracked state to the staging area.

~/ $> git add README

~/Projects/git/git_intro/(master) $> git status
# On branch master
#
# Initial commit
#
# Changes to be committed:
#   (use "git rm --cached <file>..." to unstage)
#
# new file:   README
#



File status lifecycle - add / status

Working directory Index / Staging Area
(a.k.a cache) Repository

~/ $> git add README

~/ $> git checkout README
~/ $> git reset HEAD README

git checkout will undo any local changes [ don't mixup with revert ] (index untouched)
git reset HEAD README => Remove from staging area (local copy still modified).
git reset --hard will undo both the index and the working copy

git add [stage] http://git-scm.com/docs/git-add
git checkout http://git-scm.com/docs/git-checkout
git reset http://git-scm.com/docs/git-reset

http://git-scm.com/docs/git-add
http://git-scm.com/docs/git-checkout
http://git-scm.com/docs/git-reset


File status lifecycle - rm

~/ $> git rm README
~/ $> git rm --cached README

     git rm http://git-scm.com/docs/git-rm

git rm: Remove files from the index, or from the working tree and the index
git rm --cached: unstage and remove paths only from the index

git rm - adds the file to the index to be removed [the opposite of git add ]

http://git-scm.com/docs/git-rm


File status lifecycle - commit

Working directory Staging Area
(a.k.a cache) Repository

Adding our README file will moving from the untracked state to the staging area.

~/ $> git add README

~/Projects/git/git_intro/(master) $> git commit -m "Adding README file"
[master (root-commit) 38a5307] Adding README file
 1 file changed, 2 insertions(+)
 create mode 100644 README

~/ $> git commit

1. git commit -a will add any modified / deleted files to the Staging (Index) and commit them
2. -m "your commit message"

=> git commit -a -m "your commit message" <=

git commit http://git-scm.com/docs/git-commit

http://git-scm.com/docs/git-commit


So far so good ...

Buckets
● Working copy
● Index / Cache/ Stage
● Repository

Commands
● git help [cmd]
● git config
● git init
● git clone 
● git add (stage)
● git status
● git reset
● git checkout
● git rm
● git commit



Git's internals 



~/Projects/git/git_intro/(master) $> git commit -m 
"Adding README file"
[master (root-commit) 38a5307] Adding README file
 1 file changed, 2 insertions(+)
 create mode 100644 README

The ${GIT_DIR} .git directory
Before the commit:

~/Projects/git/git_intro/(master) $> find .git
.git
.git/refs
.git/refs/heads
.git/refs/tags
.git/description
.git/hooks/...
.git/config
.git/info
.git/info/exclude
.git/branches
.git/objects
.git/objects/pack
.git/objects/info
.git/HEAD

~/Projects/git/git_intro/(master) $> find .git
.git
.git/COMMIT_EDITMSG
.git/refs
.git/refs/heads
.git/refs/heads/master
.git/refs/tags
.git/description
.git/hooks/...
.git/index
.git/config
.git/info
.git/info/exclude
.git/branches
.git/objects
.git/objects/bd
.git/objects/bd/2510ea0000fa2294947172f6f450bd0272fdab
.git/objects/38

.git/objects/38/a5307967fe2c9f92eb3c5a46ccdcc18410b4f3

.git/objects/pack

.git/objects/info

.git/objects/43

.git/objects/43/841a2f87570c9e458ab1da83396e0a5563ff36

.git/logs

.git/logs/refs

.git/logs/refs/heads

.git/logs/refs/heads/master

.git/logs/HEAD

.git/HEAD

After the commit:



What happened ? Git Objects

Every commit consists 
of objects of three types:

[ To be precise the tree & blob are created when you 
add/stage the commit is created when you -> commit 
], more about that in a few ...

commit -> a snapshot in time

tree -> represent directory

blob -> file content



DAG - Directed acyclic graph

Git uses DAG and a 
hash mechanism to 
redirect / map the 
repository.

A directed acyclic graph (DAG 
i/ˈdæɡ/), is a directed graph with no directed 
cycles. That is, it is formed by a collection of 
vertices and directed edges, each edge 
connecting one vertex to another, such that 
there is no way to start at some vertex v and 
follow a sequence of edges that eventually 
loops back to v again.

http://en.wikipedia.org/wiki/File:En-us-DAG.ogg
http://en.wikipedia.org/wiki/Help:IPA_for_English
http://en.wikipedia.org/wiki/Help:IPA_for_English#Key
http://en.wikipedia.org/wiki/Help:IPA_for_English
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Cycle_graph#Directed_cycle_graph
http://en.wikipedia.org/wiki/Cycle_graph#Directed_cycle_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Edge_(graph_theory)


Our README as object(s)

git log -> 
commit 38a5307967fe2c9f92eb3c5a46ccdcc18410b4f3

Author: Haggai Philip Zagury <hagzag@tikalk.com>

Date:   Sat Apr 20 18:27:02 2013 +0300

commit ->
tree 43841a2f87570c9e458ab1da83396e0a5563ff36

author Haggai Philip Zagury <hagzag@tikalk.com> 1366471622 +0300

committer Haggai Philip Zagury <hagzag@tikalk.com> 1366471622 +0300

Tree ->
100644 blob bd2510ea0000fa2294947172f6f450bd0272fdab README

Blob ->
=== README FILE for git_intro ===

 Version 1.0

 8a7534e5

43841a2f

bd2510ea



refs [references]

 
8a7534e5

43841a2f

bd2510ea

point to subdir / 
file name & mode

pointer to parent 
commit

master

HEAD*$> find .git/refs/
.git/refs/
.git/refs/heads
.git/refs/heads/master
.git/refs/tags

$> cat .git/refs/heads/master
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50

The "master" branch is just like a "post-it" 
reference to the SHA1 of the latest commit



Probing Git Objects

C1 README

C2 hello.rb

$> git cat-file -p 38a5307967fe2c9f92eb3c5a46ccdcc18410b4f3
tree 43841a2f87570c9e458ab1da83396e0a5563ff36
author Haggai Philip Zagury <hagzag@tikalk.com> 1366471622 +0300
committer Haggai Philip Zagury <hagzag@tikalk.com> 1366471622 
+0300

Adding README fileparent

     git log http://git-scm.com/docs/git-log

      In every repository there is at least one "parent-less" commit

$> git cat-file -p 8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50
tree ea94fb0f34ca7dbcfc6ecaf7077dfe4b12725068
parent 38a5307967fe2c9f92eb3c5a46ccdcc18410b4f3
author Haggai Philip Zagury <hagzag@tikalk.com> 1366488967 +0300
committer Haggai Philip Zagury <hagzag@tikalk.com> 1366488967 
+0300

Adding hello.rb to repo

The commands are presented for 
educational purposes and are rarely 
used by the common developer ...

http://git-scm.com/docs/git-log


It's a blob more probing...

Git stores a single file per piece of content, named with the SHA-1 checksum of the content and its header. 

The subdirectory is named with the first 2 characters of the SHA, and the filename is the remaining 38 
characters

$> git log
commit 8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50
Author: Haggai Philip Zagury <hagzag@tikalk.com>
Date:   Sat Apr 20 23:16:07 2013 +0300

    Adding hello.rb to repo

$> git cat-file -t 8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50
commit
$> git cat-file -t bd2510ea0000fa2294947172f6f450bd0272fdab
blob

$> find .git/objects/ -type f
.
git/objects/bd/2510ea0000fa2294947172f6f450bd0272fda
b
.git/objects/5e/b56f99ad91c6e8933c3e06593a66a09e3a1b91
.git/objects/38/a5307967fe2c9f92eb3c5a46ccdcc18410b4f3
.git/objects/ea/94fb0f34ca7dbcfc6ecaf7077dfe4b12725068
.git/objects/43/841a2f87570c9e458ab1da83396e0a5563ff36
.git/objects/8a/7534e5ac1eb36ef21b8c4a06b8af5d59abee50

bd + 2510ea0000fa2294947172f6f450bd0272fdab = README

$> git cat-file -p bd2510ea0000fa2294947172f6f450bd0272fdab
=== README FILE for git_into ===
 Version 1.0



Branching & tagging



We already know branches :)

master == branch



refs [references]

 
8a7534e5

43841a2f

bd2510ea

point to subdir / 
file name & mode

pointer to parent 
commit

master

HEAD*$> find .git/refs/
.git/refs/
.git/refs/heads
.git/refs/heads/master
.git/refs/tags

$> cat .git/refs/heads/master
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50

The "master" branch is just like a "post-it" 
reference to the SHA1 of the latest commit



refs [references]

 
8a7534e5

43841a2f

bd2510ea

point to subdir / 
file name & mode

pointer to parent 
commit

foo

HEAD*$> find .git/refs/
.git/refs/
.git/refs/heads
.git/refs/heads/master
.git/refs/tags

$> cat .git/refs/heads/master
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50

The "master" branch is just like a "post-it" 
reference to the SHA1 of the latest commit



Context based development

     git branch http://git-scm.com/docs/git-branch

$> git checkout -b second-idea
will switch and create a new branch in that name in one 
command [ like executing:
"git branch the-idea && git checkcout the-idea" ]

$> git branch
* master
$> git branch the-idea
$> git branch*
 master
  the-idea
$> git checkout the-idea
Switched to branch 'the-idea'

$> ls .git/refs/heads/
master  the-idea

http://git-scm.com/docs/git-branch


refs [references] - branches

 
8a7534e5

43841a2f

bd2510ea

point to subdir / 
file name & mode

pointer to parent 
commit

master

HEAD*

the-idea

$> cat .git/refs/heads/master
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50
$> cat .git/refs/heads/the-idea
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50

$> as long as I haven't added anything to the new 
branch, the pointer's content is on the same commit 
as "master" branch - Remember DAG ?!

$> git checkout the-idea
Switched to branch 'the-idea'



refs change

$> sed -i s/1\.0/2\.0/g README
$> git commit -a -m "Bumping version to 2.0"
[the-idea aedd0cd] Bumping version to 2.0
 1 file changed, 1 insertion(+), 1 deletion(-)

 $> cat .git/refs/heads/master .git/refs/heads/the-idea
8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50
aedd0cd8ba404f292bdf3f9542d67285c489a143

$>The reference to the new object has changed the 
parent object [DAG ...] is the same

8a7534e5

master

HEAD*

the-idea

aedd0cd8



Deleting branches

Why delete you say ?! [ we never used to ... ]
More about why when we discuss implementation / 
methodology

 $> git branch -d the-idea

error: Cannot delete the branch 'the-idea' which you are 
currently on.
$> git checkout master

Switched to branch 'master'

$> git branch -d the-idea

error: The branch 'the-idea' is not fully merged.
If you are sure you want to delete it, run 'git branch -D the-idea'.



Let's create a conflict (on master)

8a7534e5

aedd0cd8

master

HEAD*

the-idea

1706dbd

$> sed -i s/1\.0/1\.1/g README
$> git commit -a -m "This change will create a conflict whilst 
merging \"the-idea\" branch"
[master 1706dbd] This change will create a conflict whilst merging 
"the-idea" branch
 1 file changed, 1 insertion(+), 1 deletion(-)

$> git log --oneline --graph --decorate --all
* 1706dbd (master) This change will create a conflict whilst merging "the-idea" branch
|  * aedd0cd (HEAD, the-idea) Bumping version to 2.0
| /  
* 8a7534e (second-idea) Adding hello.rb to repo
* 38a5307 Adding README file

"Visualize it"



gitk - viewing changes ... 

Available with git extensions & others | equivalent

$> gitk --all



Tagging 

Wait, I need to tag the version 1.0 ...
And no, a TAG isn't a BRANCH !

Tag is an object in the DAG + commit 
message & optional gpg signature 

8a7534e5

aedd0cd8

master

HEAD*

the-idea

1706dbd

1.0

2.0
1.1

$> git tag -a v1.0 -m 'version 1.0' 8a7534e5

$> git show v1.0

tag v1.0

Tagger: Haggai Philip Zagury <hagzag@tikalk.com>

Date:   Wed Apr 24 01:24:03 2013 +0300

verion 1.0

commit 38a5307967fe2c9f92eb3c5a46ccdcc18410b4f3

     git tag http://git-scm.com/docs/git-tag
git tag foo - will create a tag named foo to the 
current HEAD reference

http://git-scm.com/docs/git-tag


Commands
● git branch
● git tag
● git checkout

Browsing
● git log [ --online ]
● gitk



Merging with Git



Diff because you can't merge without a diff :)

$> git diff master
diff --git a/README b/README
index 10f515a..0ecf40f 100644
--- a/README
+++ b/README
@@ -1,2 +1,2 @@
 === README FILE for git_into ===
- Version 1.1
+ Version 2.0

git diff (with no args) diff working tree to index
git diff arg1 arg2 -- <path>  (git diff the-idea -- ./)

git config --global diff.tool <path_to_diff_tool>



Merge

git merge master the-idea

$> git merge master the-idea
Auto-merging README

CONFLICT (content): Merge conflict in README

Automatic merge failed; fix conflicts and then commit the result. === README FILE for 
git_into ===
<<<<<<< HEAD
 Version 1.1
=======
 Version 2.0
>>>>>>> the-idea$> git merge master the-idea

Auto-merging README

CONFLICT (content): Merge conflict in README

Automatic merge failed; fix conflicts and then commit the result.



Merge
Merge 2 or more commits

git merge <branch>

git merge <commit>

Git merge <branch1> <branch2> (Octopus)

$> git log --pretty=oneline --graph --decorate --all
*   3bd95903b3e2a3934b1d3bc1495f7c5c9ced5df2 (HEAD, master) Merge branch 'the-idea'
|\  
| * aedd0cd8ba404f292bdf3f9542d67285c489a143 (the-idea) Bumping version to 2.0
* | 1706dbd411de152c462172386eafa238fc50f50b This change ... conflict ... merging "the-idea" branch
|/  
* 8a7534e5ac1eb36ef21b8c4a06b8af5d59abee50 (second-idea) Adding hello.rb to repo
* 38a5307967fe2c9f92eb3c5a46ccdcc18410b4f3 Adding README file

$> git log
commit 3bd95903b3e2a3934b1d3bc1495f7c5c9ced5df2
Merge: 1706dbd aedd0cd
Author: Haggai Philip Zagury <hagzag@tikalk.com>
Date:   Tue Apr 23 22:34:54 2013 +0300
    Merge branch 'the-idea'
    Conflicts:
        README



Git Merge Abort

In a non conflicting merge => the repo is in a 
idle state.

In a conflict unless using git merge abort
the current state is that there is a "ready-made" 
commit message for the next git commit + 
conflicted files are marked in the working 
directory



Fast Forward

When the target (HEAD) is ancestor of the merged commit 
we can simply move the label.

$> git log --pretty=oneline --graph --decorate --all
* 6c3ad0acdec4d777280a982fc455bda3d6207961 (HEAD, the-idea) Adding two more files to show fast 
forward
* 160f9d7b0ed4196f7ded236a7e88f1d51b78b3eb Adding more files ...
* 806046ca43af65fdbda9dc36c156cea04d8ff1ae Adding a file
* 154756115a95beba276055e0e4d01d546b11d8c0 (master) Adding readme file

$> git merge the-idea 
Updating 1547561..6c3ad0a
Fast-forward
 0 files changed
 create mode 100644 123/123.txt
 create mode 100644 234/234.txt
 create mode 100644 file.txt
 create mode 100644 file2.txt
 create mode 100644 file3.txt

Do some "housekeeping" and delete Redundant branches ...

git branch -d the-idea



Non/Fast Forward

8a7534e5

master

the-idea

aedd0cd8

ae2c0cd8

9idb9cd8

8a7534e5

master

the-idea

aedd0cd8

ae2c0cd8

9idb9cd8

8a7534e5

master the-idea

aedd0cd8

as34cd8

9idb9cd8

ae2c0cd8

Fast Forward Non Fast ForwardBefore merge



Remote Tracking



Remotes ?

$> git clone git@github.com:jenkinsci/tikal-
multijob-plugin.git
Cloning into 'tikal-multijob-plugin'...
remote: Counting objects: 1872, done.
remote: Compressing objects: 100% (661/661), done.
remote: Total 1872 (delta 601), reused 1745 (delta 476)
Receiving objects: 100% (1872/1872), 199.15 KiB | 195 KiB/s, 
done.
Resolving deltas: 100% (601/601), done.

     git clone http://git-scm.com/docs/git-clone

http://git-scm.com/docs/git-clone


Remote tracking Reference(s)

The remote/master is the 
same type of reference like the 
"local" master but from a 
different namespace.
.git/refs/remotes/...
This namespace is mapped 
to the remote server !
- represented by a url

 
8a7534e5

43841a2f

bd2510ea

master

HEAD*

remotes/server/master



Cloned repository

$> cat .git/refs/remotes/origin/HEAD 
ref: refs/remotes/origin/master

$> cat .git/config 
...
[remote "origin"]

fetch = +refs/heads/*:refs/remotes/origin/*
url = git@github.com:jenkinsci/tikal-multijob-plugin.git

[branch "master"]
remote = origin
merge = refs/heads/master



Remotes - git fetch

Update all refs of origin 
(Branches, tags, blobs, trees etc).
Nothing except origin refs have 
change locally in our repository.

If there are merges to be made a .
git/FETCH_HEAD file will be created 
with the list of commits who need merge.

origin/master

aedd0cd8

er60ae13

bh78of42

}
master

aedd0cd8

will sync all objects 
until a node which 

already exists locally 
is met.



Remotes - git pull
Attempts to fetch & merge at the same time.

8a7534e5

origin/master

master

aedd0cd8

er60ae13

bh78of42

8a7534e5

origin/master

master

aedd0cd8

ae2c0cd8

9idb9cd8

er60ae13

bh78of42

Can be 
FFWD

non FF
merges



Remotes - git push [share]

If you have one remote 
[origin], git push will 
suffice.

If you have more than one ...
git push <foo> master



Adding a remote

git remote add origin https://server/repo_name.git

git remote add origin git@server:user/repo_name.git

git push (to:)origin (branch:)master     git remote http://git-scm.com/docs/git-remote

http://git-scm.com/docs/git-remote


Pushing [Sharing]

$> git remote add origin git@github.com:hagzag/git_intro.git
$> git push origin master
Counting objects: 6, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 646 bytes, done.
Total 6 (delta 0), reused 0 (delta 0)
To git@github.com:hagzag/git_intro.git
 * [new branch]      master -> master

$> git push 
No refs in common and none specified; doing nothing.
Perhaps you should specify a branch such as 'master'.
fatal: The remote end hung up unexpectedly
error: failed to push some refs to 'git@github.com:
hagzag/git_intro.git'



Commands
● git clone
● git fetch
● git pull
● git push
● git remote [add]



Collaboration workflow

1. Clone a remote repo
2. Perform changes 

[master/private branch]
3. Pull (if your lucky ...) / Fetch - Merge to 

sync
4. (more changes? ) -> Push to 

remote

● clone
● branch
● checkout
● add
● commit
● fetch
● merge
● pull
● push



A few useful facts

More about



Git Speed

The only metrics "slower" than svn are
Clone and Size on disk due to the nature of Git 
which has all the History since the beginning of 
time ...



Do more with



Backup with Git (or: git not just an SCM)

● I had a         based website, with digital assets (png, jpeg, 
zip files etc) which I needed to backup.

● Website source was in 
● The result =>
● Someone deleted a file and 

needed recovery => It's all 
in Git's history.

● Rsync my previous method would use --delete which 
clearly removes older files => lose history of my digital 
assets ! [ save space, gain control over history, 
fast disaster recovery ]

● See Gist: https://gist.github.com/hagzag/5396510

https://gist.github.com/hagzag/5396510
http://drupal.org/files/druplicon.large_.png
http://1.bp.blogspot.com/-IMpyLY11UEY/Tvi4V8r_WdI/AAAAAAAAFl8/_NoIeIguvBs/s1600/logo-svnX.png


etckeeper

In a nutshell a set of tools which enables one to 
store /etc/* content into version control.
etckeeper works with git, mercurial, darcs, or 
bzr [ common DVCS systems ].
On a change in one of the files the change will 
be submitted to VCS.

http://joeyh.name/code/etckeeper/ 

                                         https://help.ubuntu.com/10.04/serverguide/etckeeper.html

http://joeyh.name/code/etckeeper/
http://joeyh.name/code/etckeeper/
https://help.ubuntu.com/10.04/serverguide/etckeeper.html


Deploying with Git

● A few tracks are available per language
● Remote master =  the production which 

heroku will deploy for you based on Git
● https://devcenter.heroku.com/articles/git

https://devcenter.heroku.com/articles/git
https://devcenter.heroku.com/articles/git


References

● ProGit: http://git-scm.com/book

● Git Internals: https://peepcode.com/products/git-internals-pdf - 
well spent 12$ [before git pro existed] ...

● Git-scm.org: http://git-scm.com/documentation

● "Git for Computer Scientists": http://eagain.
net/articles/git-for-computer-scientists/

● Icons in this presentation taken from:  http://www.icons-land.com/

http://git-scm.com/book
https://peepcode.com/products/git-internals-pdf
http://git-scm.com/documentation
http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.icons-land.com/


http://www.flickr.com/photos/robnas/3400482826

Haggai Philip Zagury
haggai@tikalk.com

http://www.flickr.com/photos/robnas/3400482826
http://www.flickr.com/photos/robnas/3400482826


What's next, you ask 

http://www.flickr.com/photos/drachmann/327122302/

● Git workflows / implementations
● Branching schemes 
● Advanced Git topics: 

○ rebase
○ cherry picking 

http://www.flickr.com/photos/drachmann/327122302/
http://www.flickr.com/photos/drachmann/327122302/

