Concurrent ML:
The One That Got Away

Michael Sperber
@Sperbseﬂ

Hwe group

”’Mz’wo group

* e 00009 Q0Oe ¢ -
-°»zxxxx'-;;;
| L &R

software pro;ect development
in many fields

Scala, Clojure, Erlang, Haskell, F#, OCaml

training, coaching
co-organize BOB conference

e group

Myself

* taught Concurrent Programming
at U Tubingen in 2002

* implemented Concurrent ML for
Scheme 48

* designed Concurrent ML for
Star

F# Tutorial, CUFP 2011

c4

c3

dela l

@(
Cc2

Y C

L

Figure

l + l cl @ outCh)_
5

3.3: The Fibonacci stream network
John Reppy. Concurrent ML. Cambridge.

e group

Actor Model

F#

split (inbox: Agent<SinkMessage< ' T>>)
(sinkl: Agent<SinkMessage< ' T>>) (sink2: Agent<SinkMessage<'T>>)
. Async<unit> =
rec loop (sinkl: Agent<SinkMessage<'T>>)
(sink2: Agent<SinkMessage< T>>) =
async {
msg = inbox.Receive ()
msg
| EndOfInput ->
sinkl.Post EndOfInput
sink2.Post EndOfInput
()
| value x ->
sinkl.Post msg
! loop sink2 sinkl
| GetNext -> failwith "premature GetNext"

}

loop sinkl sink2

Abstractions Matter!

Lliiseasss.

(Duh!) %@fwe group

Composition Matters!

Lliiseasss.

i

Concurrent ML

SML/NJ
Manticore
Multi-MLton
Scheme 48
Racket
Guile

Star
*Haskell

333333
82

jREgsssssss

Things that are not CML

Erlang

Go

Clojure core.async
Akka streams

2333333

?‘é%fwe group

fi22sssseass

jREgsssssss

Fibonacci Network

(define (make-fibonacci-network)
(let ((outch (make-channel))
(cl (make-channel))
(c2 (make-channel))
(c3 (make-channel))
(c4 (make-channel))

(c5 (make-channel)))

(delayl 0 c4 c5)
(copy c2 c3 c4)
(add c3 ¢c5 cl)

(copy cl c2 outch)

(send cl 1)
outch))

cd

Y

delay

c3

¢S5

c2

Process Networks: Add

(define (add inchl inch2 outch)

(forever c [§}
#f c2
(Lambda ()

+ copy outCh

(send outch " —= ~

(+ (receive 1inchl)
(receive inch2))))))

f?i‘:iii{[.lje group

Engine

(define (forever 1nit f£f)
(spawn
(Lambda ()
(let loop ((s init))

(Loop (£ s5))))))

Delay

(define (delayl init inch outch)

(forever c4 %
init :EF
(Lambda (V) c3 o2
(1f v .)
(begin<j§§;>ﬁ S S
(send outch v)
#£)

(receive inch)))))

@e)s),

(define (copy inch outchl outch2)
(forever - E@‘
#£ &3 2
(lambda () 1

delay

(let ((Vv (recgive inch)))

copy outCh S

(send outchl v)
(send outch2 v)))))

Straight-Up Channel Ops

(: send ((channel %a) %a -> void))

(: receive ((channel %a) -> %a))

@e)s),

(define (copy inch outchl outch2)
(forever
#£
(lambda ()
(let ((v (receive inch)))
- (send outchl v)

- (send outch2 v)))))

Selective Communication

(: select (?2?222222 ...) —-> %a)

= e group

jetee
jEtes 3
jiges 3
jREesssscssoii
.

Clojure

(defn copy
[inch outchl outch2]
(forever
nil
(fn [_]
(9o
(let [v (<! inch)]
(alt!
[[outchl v]] (>! outch2 v)
[[outch2Z2 v]] (=! outchl v)))))))

e group

Go

func copy(inch,
outchl, outch2 chan interface{}} {

for {
select {
v := <-inch
select {
case outchl <- v:
outch2 <- v
case outch2 <- v:
outchl <- v

e group

Erlang

copyl(Outpl, Outp2) ->
receive
V =-> Outpl ! V,
Outp2 ! V
end.

copy(Outpl, Outp2) ->
forever([],
fun(_) ->
copyl(Outpl, Outp2)
end).

live group

F#

copy(outl: Agent< a>, out2: Agent< a>)
: Agent< a> =

Agent.Start (inbox ->
forever((), () ->
async {

v = 1nbox.Receive ()
outl.Post v
out2.Post v

1))

Selective Communication

(: select ((rv %a) ... —-> %a))

(: send-rv ((channel %a) %a ->
(rv void)))

(: receive-rv ((channel %a) ->
(rv za)))

llMap”

(rv 3b)))

Copy [Select

(define (copy inch outchl outch2)
(forever
#£
(Lambda ()
(let ((v (receive 1inch)))
(select (wrap (send-rv outchl v)
(Lambda ()
(send outch2 v)))
(wrap (send-rv outch2 v)
(Lambda ()
(send outchl v))))))))

‘ live group

Add [Select

(define (add inchl inch2 outch)
(forever
#£
(Lambda ()
(let ((p (select
(wrap (receive-rv inchl)
(Lambda (a)
(cons a
(receive 1inch2))))
(wrap (receive-rv inch?2)
(Lambda (b)
(cons (receive inchl)

b))))))
(send outch (+ (car p) (cdr p)))))))

e group

Rendezvous Composition

(: choose ((rv %a) ... —> (rv %a)))
(: sync ((rv za) -> 3a))

(¢ select ((rv %a) ... => %a))

Other Kinds of Rendezvous

timeout

async channels
shared memory
/O

333333
82

1113333338388

’?‘é%ﬁue group

(i

jREgsssssss

Roll yer own rendezvous

(define-record-type
(swap really-make-swap swap?)
(fields
; (channel (pair a (channel a)))
(i1mmutable channel
swap—-channel)))

(define (make-swap)
(really-make-swap (make-channel)))

Swap Meet

(define (swap-rv swap message-out)
(let ((channel (swap-channel swap)))
(guard
(Lambda ()
(let ((in-channel (make-channel)))
(choose
(wrap (receive-rv channel)
(lambda (pair)
(let ((message-in (car pair))
(out-channel (cdr pair)))
(send out-channel message-out)
message-in)))
(wrap (send-rv channel
(cons message-out in-channel))

(Lambda ()
(receive in-channel)))))))))

Guard

(: guard ((-> (rv %a)) -> (rv %a)))

Negative Acknowledgements

(: with-nack
(((rv void) -> (rv %a)) ->
(rv za)))

Losing Interest

(with-nack
(Lambda (nack)
(let ((replych (make-channel)))
(spawn
(Lambda ()
(send reqgch
(make-request replych nack))))
(receive-rv replych)))))

Notice You've Been Dumped

(let* ((rq (receive reqgch))
(replych (request-reply-channel rq))
(nack (request-nack rq)))

(select
(wrap (send-rv replych)
(lambda () <commit>))

(wrap nack
(Lambda () <abort>)))))

Erlang Processes

Channels

core.async vs. CML

merge

function COmbinatOr!

Usage: (merge chs)
(merge chs buf-or-n)

Takes a collection of source channels and returns a channel which
contains all values taken from them. The returned channel will be
unbuffered by default, or a buf-or-n can be supplied. The channel
will close after all the source channels have closed.

: ;:E'ﬁve group

User-Defined Combinators in
core.async

go

macro

Usage: (go & body)

Asynchronously executes the body, returning immediately to the

calling thread. Additionally, any visible calls to <!, >! and alt!/alts!
channel operations within the body will block (if necessary) by
'parking' the calling thread rather than tying up an 0S thread (or

the only JS thread when in ClojureScript). Upon completion of the
operation, the body will be resumed.

User-Defined Combinators in
core.async

Concurrency on the JVYM

Why is creating a Thread said to be expensive?

The Java tutorials say that creating a Thread is expensive. But why exactly is it expensive? What exactly is
happening when a Java Thread is created that makes its creation expensive? I'm taking the statement as
true, but I'm just interested in mechanics of Thread creation in JVM.

Java thread creation is expensive because there is a fair bit of work involved:

e System calls need to be made to create / register the native thread with the host OS.

A
A 4
A
72 e A large block of memory has to be allocated and initialized for the thread stack.
A 4
» Descriptors needs to be created, initialized and added to JVM internal data structures.

It is also expensive in the sense that the thread ties down resources as long as it is alive; e.g. the thread
stack, any objects reachable from the stack, the JVM thread descriptors, the OS native thread descriptors.

All these things are platform specific, but they are not cheap on any Java platform I've ever come across.

http://stackoverflow.com/questions/5483047/why-is-creating-a-thread-said-to-be-expensive

| plwe group

Threads vs. Actors

AN

(| stackoverflow

Why can you have millions of actors in an application, but just 10,000 threads is too many?

A, Why can you have millions of actors in an application, but just 10,000 threads is too many? How is asked 4 years ago
it that creating millions of actors is practical, but more than a couple threads is not? What can

2 threads do that actors can't (or else we would use actors all the time!)?
v active 4 years ago

multithreading actor

viewed 442 times

core.async

(defn fake-search [kind]
(fn [c query]
(9o
(<! (timeout (rand-int 100)))
(>! ¢ [kind query]))))

core.async

(let
[old-frame 2202 auto (clojure.lang.Var/getThreadBindingFrame)]
(try
(clojure.lang.Var/resetThreadBindingFrame

(ioc-macros/aget-object state 3730 3))

inally
(clojure.lang.Var/resetThreadBindingFrame
old-frame 2202 auto))))))

Buffering /| Backpressure?

Channel Queues

The limits of
my language
are the limits
of my mind.
All | know is
what | have
words for.

Expressiveness

Reagents
Concurrent ML
Clojure core.async
Hoare’s CSP
Erlang

Design Choices?

Reagents
Concurrent ML
Clojure core.async
Hoare’s CSP
Erlang

Concurrent ML

Compose all the things!

Open Questions

* backpressure
e distribution
* ... while preserving composability

2333333

R g

jREgsssssss

