

Hello Minsk! 

When I was preparing for

my first conference all my

friends scared me with

various myths about Minsk

I met amazing people and

I'm really happy to be

here.

I'm very nervous, cause it's my

first presentation in English and

if I make any mistakes I

apologize in advance

my name is Anton

I'm an opensource lover

sidekiq and hanami

commiter

Also you can find my

commits in other big

projects like ruby, rails,

crystal, etc.

Besides I am trying to improve

my local user group. That's why I

am making drynkups in

moscow.rb and I'm a curator of

Collective twitter account for

ruby developers.

There is a nice word in Japanese

which sounds as “hanami”. It

means “watching the flowers

bloom” The most popular flower

is sakura but other flowers such

as tulips are watched as well.

There are many books

and images illustrating

this process . I found this

one.

As you might understand today

we aren’t going to watch

blooming sakura , although the

weather is perfect outside. 

I’m going to talk about ruby web

framefork which is called hanami.

This framework was written by

developer from Italy, his name is Luca.  

The first commit was created three

years ago. As you can see, hanami is

a relatively new framework

Core team consists of two

people besides Luca.

At this moment only few

companies used this framefork

in production. I found five

companies and two of them -

are Russian companies.

Why is that framework getting

more and more popular?

Let's talk about the basic

ideas

the first idea is modularity
It enables you to you to switch code and
framework parts.

Do you want to change model to AR or ROM?
No problem, it’s easy. Do you think that there is
too much of hanami ? You can use just routes.

Simplicity. If you use simple tool you can start

working on production application faster.  

I want to ask few questions:
• Who read at least one book about sinatra or

grape?
• about rails?
• And who read more than five books about rails?

 I think I read five different books about rails.

Framework is just a tool, don't make a cult of it

DSL is rather a controversial approach.

And Martin Fowler has great posts

about this.

 

We all love configuration DSL.  

But if you write DSL code using

business logic, you have a big

problem.

few conventionals: 

If you are going to use hanami, you

gain more freedom. You don't need to

think how you can mix your application

and framework conventional. You're like

a Samurai who chooses his own path

the next idea is using pure

objects. I think everything

on this slide is clear

Zero Monkey-Patching

Don’t think whether this

method comes from

framework or language

Using Tread safe you don’t

have to worry about

parallel computing

the most important part of

my talk is in the next slide.

Please, pay attention to it.  

hanami is not rails. 

hanami is not rails killer.  

And comparison of these

frameworks is a stupid idea.

But we'll compare them later

Let's start with simple

things: all web

applications contain two

different parts:

business logic and data flow

That's why it's normal to split

this parts in your application.

I'll start talking about a data

flow

Let's refresh in the memory what

great people say. They recommend

a monolith- first strategy. And

hanami has a simple way to create

monolith apps. This way is called

Application Architecture. It looks

like a typical rails application

As you can see, app

folder has 3 different

parts.

The first part is an

application configuration

The next part are

controllers and routes

and the last part is

responsible for displaying

your data

After that, your startup will make

money and ,of course, you'll want

to rewrite all you code to

microservices.  

And hanami has a simple solution

of this problem. It looks like this:

You can see that now

hanami app has an apps

folder. In this folder you

can find two different

applications. 

In my example the first

app is admin. This app

contains all parts of

monolithe app.

and the second app is

web

I told that our applications

have business logic too.

This logic is contained in

lib folder.

And this folder has 3 parts

too config and mappings 

model (character M in

mvc)

and other stuff, mailer and

users libraries

I told that hanami is a

modular web framefork.

Let's look into its parts.

The hanami organization

has ten different gems

• hanami - base part, this gem mixes all other
gem together and provides CLI

• router - Rack compatible HTTP router for
Ruby

• controller - Full featured and fast actions for
Rack

• utils - Ruby core extensions and class utilities
• model - Persistence with entities and

repositories

the next five
• validations - Validations mixin for Ruby

objects
• helpers - View helpers for Ruby

applications
• view - Presentation with a separation

between views and templates
• assets - Assets management for Ruby
• mailer - Mail for Ruby applications

I know that all of this looks

frightening. That’s why

let's look at differences

with other frameforks

In this part of my speech

I'll show you only code

samples, because one

famous person Said:

The first example - is

simple rack app I think

everyone knows about

this.

in hanami routes you can

use rack apps and it'll look

like this:

Sinatra. I think it's clear

too.

Hanami routes again. I lied to you.
Because in this example I use
block notation instead of class.

it's logical to compare rails action
and hanami action. And I have a
really good example of rails action

relax, I'm kidding

I told about it. hanami and rails are
very different
the only thing that unites them is
MVC and ruby. That's why I'll
cover all parts of MVS and show
you how it is realized in rails and
hanami.

Controllers

Typical rails controller.

This is class where each

method is action. Action

can have any name.

rails controller in DHH style. 

One controller is one class

too. But this class can be

included to only REST

actions.

Hanami. You can see that

action is a class and

controller module. Action has

only one public method call. 

Yes, it looks a like service

object.

models 

on this slide you can see a

simple AR class. With

validations, database

logic, data logic and

associations.

of course, you can use the ROM.

but I think rom has a big number

of unnecessary parts and also

you'll need to realize adaptors,

command mappers, etc

Hanami is a cross between

rails and ROM. The model

has two parts: entity and

repository. In entity you

work only with data

in repository you work only

with DB logic. For example

if you want to create,

delete or select record you

need to use repository

utils  

I have only one slide with

string puralize method. You

can see that rails

monkeypatch core class and

hanami create separate class

View

How it works in rails  

we have a view folder with templates and

instance variables which we call in our

templates. Also we have helper modules.

I think that everybody in this room knows that

rails helpers have some problems.  

For example a few days ago I got a bug when

one person initialized three methods with one

name and after that he had problems.

In hanami we have a view object. A

view object is a typical ruby class

where you can put all your? view logic

and call this in templates. 

Also we have templates and also

hanami has getters from controller

instead instance variable.

so and the last part

assets

Unfortunately I don't like

this, that's why I'll leave it

as an elective for

independent review

The next part of my

speech is about Pros and

Cons

No magic: 

let's look in to this action

helper

this is a real test from my

hanami application.

As you can see in let

block I initialize new action  

this is a simple ruby

instance.

after that I can test it like a

usual object

no magic with get and

post helpers. Only ruby objects  

No monkey-patching  

I don't know about you but I really

often have similar questions on

SO.  

Why is it important? The general

idea lies in erasing boundaries

between language and framework.

Best practices.
I hope that great tool does not just
work correctly this tool inculcates
good practices for developer and
product
I think that hanami is a great tool
because:

This framework

encourages modularity,

but no one should make a

cult of it.

also this framework

encourages the separation

logic. Many developers

told about this. Remember

SOLID for example.

This framework uses test first

principles. 

As you can see, hanami applications

have a good testing API.  

You’ve seen earlier how you can test

controller, views and models are easily  

tested as well

oh no, I'm so sorry, I forgot

that tdd is dead

Let's talk about cons

TDD. this is not just a problem of

hanami but sometimes you find

yourself writing too many tests 

Also after some time you don't

understand how and why you

need to test some class

I think you notice that this

framework is verbose. -

and if you write a simple

admin with CRUD?

Itstarts driving you mad

The evident problem is the
framework version instability. We
occurred active changes in
modelI remember those times
when link_to helper didn’t work
correctly. Gem was renamed
thanks to IBM

Hanami is very young comparing
with rails which is 10 years old
and Sinatra is 8.That's why some
useful gems are missing.And I
think you can’t create a blog for
15 minutes because many parts
you‘ll have to create manually

if you are a mode boy and want

to work with all of this I have

some bad news for you. Hanami

doesn’t support all of this.But if

you want to try to use it, don't

forget a developer’s manifesto

I know that I’ve said a lot

but be patient, we are

almost done

yes, we all love

benchmarks. And I know

that benchmarks are only

fanaticism, but everyone

loves charts.

for this I used puma with rackup
files and wrk for stress test.

you can find github link bellowif
you have any ideas how I can
improve my benchmarks I'll be
happy to talk about this

on the first chart I compare

rack and hanami routes.

I think that this result was

predictable

the next chart compares

JSON API serversI use

sinatra, grape and hanami

routes with controllers

and the last chart shows rails and

hanami.

For this I created empty rails and

hanami applications. After that I added

two actions for each application. first

action responde view, and second api.

Draw your own conclusions.

so, now I want to talk

about my experienceI can

group All my hanami

applications in two and

half parts

There were either pure json

api, or web applications with

admin pages.Also I created

public application which

mixed api and web part.

I liked doing apis and actions.
Actions let you test your urls. Well,
you have more coding but it
brings you positive feelings.
Now I can say that my next api
will be on hamani. I really love
controllers and models realisation

Link shooter has been

very controversial. This

project contained JSON

API and view parts.

And finally. Web apps with admin

pages. I’ve told before , typical

admin pages are a very bad part of

hanami projects. You need to work

with assets and with views and now

it is still raw. But I hope that in the

future it is going to be much better.

Last point of my talk: gems

I will answer honestly, there are few

of them , but they are being written.

Now I’m working with integrate with

rodauth from Jeremy. Previously I

worked with file upload gem

but anyway, don't forget

that hanami is rack

wrapper and you can use

rack gems anytime.

if you are interested with

hanami, see this links.

On this slide you can find all

necessary links: link to the

main site chat and forum

Thank you for listening,

any questions?

