


ABOUT	ME

Jay	Allan	Jethwa
Team	Lead	Software	Development
InnoGames	Düsseldorf

Joined	InnoGames	in	2011
Before:	Ubisoft	Blue	Byte

Currently	working	on
Unannounced Project



AGENDA

2

1

4

Introduction

Inversion	of Control

Let‘s Become Strange

5 Conclusion

3 Unity IoC Frameworks





5Source:	https://www.flickr.com/photos/4nitsirk/3203863340/



6Source:	https://www.flickr.com/photos/himmat/14100491042/



7Source:	https://www.flickr.com/photos/127969409@N03/15273796026/



8

MATCALFE’S	LAW

“As	the	number	of	interacting	components	grows,	the	
wiring	and	number	of	connections	between	them	grows
exponentially”



9Source:	https://www.flickr.com/photos/threar/15238870400/



10





12

When	you	go	and	get	things	out	of	the	refrigerator	for	
yourself,	you	can	cause	problems.	

…FROM	THE	PERSPECTIVE	OF	A	FIVE-YEAR	OLD

Source:	
https://www.flickr.com/photos/nicocavallotto/3673367666/

You	might	leave	the	door	open,	you	might	get	something	
Mommy	or	Daddy	doesn't	want	you	to	have.	
You	might	even	be	looking	for	something	we	don't	even	
have	or	which	has	expired.

What	you	should	be	doing	is	stating	a	need,	
"I	need	something	to	drink	with	lunch,"	and	then	we	will	
make	sure	you	have	something	when	you	sit	down	to	eat.

John	Munsch,	28	October	2009.
Source:	http://en.wikipedia.org/wiki/Dependency_injection



13

public class Player : MonoBehavior
{

private void Update()
{

if (Input.GetKey(KeyCode.UpArrow))
{

MoveUp();
}

}

…
}



14

public class InputController
{

public bool IsUpKeyPressed
{

get
{

return Input.GetKey(KeyCode.UpArrow);
}

}
}



15

public class Player : MonoBehavior
{

private InputController controller = new InputController();

private void Update()
{

if (controller.IsUpKeyPressed)
{

MoveUp();
}

}
}



16

public interface IInputController
{

bool IsUpKeyPressed { get; }
}



17

public class InputController : IInputController
{

public bool IsUpKeyPressed
{

get
{

return Input.GetKey(KeyCode.UpArrow);
}

}
}



18

public class Player : MonoBehavior
{

private IInputController controller;

public void SetController(IInputController input)
{

controller = input;
}

private void Update()
{

if (controller.IsUpKeyPressed)
{

MoveUp();
}

}
}



19Source:	https://www.flickr.com/photos/tombullock/15713223772

DEPENDENCY	INJECTION



20

public class Player : MonoBehavior
{

[Inject]
public IInputController InputController { private get; set; }

private void Update()
{

if (controller.IsUpKeyPressed)
{

MoveUp();
}

}
}



21

”Moving	the	decision	of	which	concrete	class	to	use	away
from	the	part	of	the	system	which	uses	it”

INVERSION	OF	CONTROL





23



24

Dependency	Injection

Model-View-Controller

Signals

Promises



25

Powerful	Dependency	Injection

Commands

Signals

Object	Graph	Validation

Auto-Mocking



26

Svelto ECSSyrinj

Source:	https://www.flickr.com/photos/29638108@N06/8571234513/





28

“Entry	point for a	Strange-driven application or module“

CONTEXTVIEW

• MonoBehavior which instantiates the Context
• Needs	to be attached to a	root object in	Unity‘s object hierarchy

public class Main : ContextView
{

private void Awake()
{

context = new MainContext(this, true);
context.Start();

}
}



29

“Glue which connects the otherwise disconnected parts of the application“

CONTEXT

• There may be multiple	Contexts within an	application,	further separating it into
separated modules

public class MainContext : MVCSContext
{

override public void mapBindings()
{

…
}

}



30

“Connection	of one or more of anything to one or more of anything else“

BINDING

• Enforces loose coupling of components throughout the application.

Bind<IInputController>().To<KeyboardInputController>();

Bind<PlayerView>().To<PlayerMediator>();

Bind<GameModel>().ToSingleton();



31

“Alternative	Event	Dispatching system“

SIGNAL

public class PlayerMovedSignal : Signal<float>
{
}

• Callbacks instead of allocating events
• Support	for 0	– 4	strongly typed parameters
• Type-safe	and will	break	at	compile-time	if callback signature does not	match



32

“Controls	visible and audible output and input for the user“

VIEW

• MonoBehavior attached to corresponding GameObject
• Views	are “dumb“:

• Views	do	not	contain any logic
• Views	do	not	possess any knowledge of the rest of the application



33

public class Player : View
{

}

[Inject]
public IInputController InputController { private get; set; }

public InputSignal Input { get; private set; }

protected void Awake()
{

base.Awake();
Input = new InputSignal();

}

public void MoveTo(float y)
{

transform.position = new Vector3(0f, y);
}

private void Update()
{

if (InputController.IsUpKeyPressed)
Input.Dispatch(InputDirection.UP);

}



34

“Connects the View	to the rest of the application“

MEDIATOR

• Automatically created and attached to corresponding View
• Listens	to events from the View
• Sends/receives Signals	to/from the Application



35

public class PlayerMediator : Mediator
{

}

[Inject]
public PlayerView View { private get; set; }
[Inject]
public InputSignal InputSignal { private get; set; }

override public void OnRegister()
{

View.Input.AddListener(OnInputReceived);
}

private void OnInputReceived(InputDirection direction)
{

InputSignal.Dispatch(direction);
}



36

“Controls	the flow of the Application“

COMMAND

• Commands are the Controllers	in	the classic	Model-View-Controller	pattern
• Strange	automatically listens to Signals	that are bound to Commands
• A	Signal	can be bound to one or more Commands



37

BINDING	SIGNALS	TO	COMMANDS

Bind<StartupSignal>().To<StartupCommand>().Once();

Bind<InputSignal>().To<PlayerInputCommand>().Pooled();

public class InputSignal : Signal<InputDirection>
{
}



38

public class PlayerInputCommand : Command
{

}

[Inject]
public PlayerModel PlayerModel { private get; set; }
[Inject]
public InputDirection InputDirection { private get; set; }

override public void Execute()
{

PlayerModel.MovePlayer(InputDirection);
}



39

“Stores	the data of the application“

MODEL

• Models	do	not	listen	to Signals
• Should not	have any dependencies on	other Models
• Are	not	aware of anything outside	of their scope



40

public class PlayerModel
{

public float PositionY { get; private set; }

}

[Inject]
public PlayerMovedSignal PlayerMovedSignal { private get; set; }

public void MovePlayer(InputDirection direction)
{

float newPos = CalculateNewPosition(direction);

if (IsValidPosition(newPos))
{

Position = newPos;
PlayerMovedSignal.Dispatch(Position);

}
}



41

public class PlayerMediator : Mediator
{

…

override public void OnRegister()
{

…

}

…
}

[Inject]
public PlayerMovedSignal PlayerMovedSignal { private get; set; }

PlayerMovedSignal.AddListener(OnPlayerMoved);

private void OnPlayerMoved(float position)
{

View.MoveTo(position);
}





43

STRUCTURED	CODE



44

FRAMEWORK



45

PERFORMANCE



46

LEARNING	CURVE



@Sarky_de /jayallanjethwa /jayallanjethwa

jay.allan-jethwa@innogames.com


