Top Surprises in Swift

Tammo Freese (@tammofreese)

January 14th, 2015

Why Focus on Surprises?

Not enough time for a complete introduction into Swift

Why Focus on Surprises?

Not enough time for a complete introduction into Swift

Surprises: Unexpected, astonishing, highlights

Why Focus on Surprises?

Not enough time for a complete introduction into Swift
Surprises: Unexpected, astonishing, highlights

Don't want to talk about expected, non-astonishing :)

Top Surprises In Swift

Top Surprises in Swift

Seven top surprises from the Ruby perspective

Top Surprises in Swift

Seven top surprises from the Ruby perspective
Only surprises in the language
e Won't cover REPL, Playground, command line scripts

e \Won't cover current problems with tools

1) No Garbage Collection

1) No Garbage Collection

Automatic Referenc Counting (ARC) instead

1) No Garbage Collection

Automatic Referenc Counting (ARC) instead
References up the reference graph:
e Jo single owning object: unowned

e Otherwise: weak

1) No Garbage Collection

Automatic Referenc Counting (ARC) instead
References up the reference graph:

e Jo single owning object: unowned

e Otherwise: weak

Less of a problem than you may expect

2) Constants

2) Constants

Declare variables with var

Declare constants with lLet

var 1
Let j

2) Constants

Declare variables with var

Declare constants with lLet

var 1
Let J

Default for function parameters: Let

func printTripleOf(i: Int) {
i *= // COMPILER ERROR
println(i)

3) Types

3) Types

Swift is a strongly typed language

var numbers: [Int] = [42, 4, &, : :]
numbers.sort({ (a: Int, b: Int) -> Bool in
a <b

1)

3) Types

Swift is a strongly typed language

var numbers: [Int] = [42, 4, &, : :]

numbers.sort({ (a: Int, b: Int) -> Bool in
a <p»b

1)

Good thing: Swift has type inference

var numbers = [42, 4, 8, : ,]
numbers.sort({ a, b in a < b })

3) Types

Swift is a strongly typed language

var numbers: [Int] = [42, 4, &, : :]

numbers.sort({ (a: Int, b: Int) -> Bool in
a <p»b

1)

Good thing: Swift has type inference (and more goodies)

var numbers = [42, 4, 8, : ,]
numbers.sort { $0 < $1 3

4) Optionals

4) Optionals

Typical in typed languages (example Java):

int 1; // Value: Cannot be null
Object object; // Reference: Can be null

4) Optionals

Typical in typed languages (example Java):

int 1; // Value: Cannot be null
Object object; // Reference: Can be null

In Swift, non-optional is default, optional is an own type:

var 1: Int // Value: Cannot be nil
var object: AnyObject // Reference: Cannot be nil
var 12: Int? // Optional value: can be nil

var objectl2: AnyObject? // Optional reference: can be nil

4) Optionals: Advantages

We can make values optional

We can make references non-optional

func indexOfltem(item: Item) -> Int? {
/] ...
b

5) Focus on Values

5) Focus on Values

Ruby: Objects are referenced
Java: Objects are referenced, but primitive types are values

Swift: Objects are referenced, but primitive types are values, ...

5) Focus on Values

Ruby: Objects are referenced
Java: Objects are referenced, but primitive types are values

Swift: Objects are referenced, but primitive types are values,

e and structs are values,

e and enums are values,

e and Array, Dictionary, String are values!

5) Focus on Values

Advantage: Imagine storing an array of 10,000 3D points

5) Focus on Values

Advantage: Imagine storing an array of 10,000 3D points
 Ruby/Java: Around 10,002 memory allocations

e Swift: 1 memory allocation

6) Tuples

6) Tuples

Tuples allow easy grouping of values/references

Let result = (:)
// Type of result is (Int, String)

Allow optional naming of the elements

Let result = (code: , status:)
// Type of result 1s (code: Int, status: String)

6) Tuples: Special Cases

One tuple type is equivalent to the type inside
let x: (Int) = (42) // x has type Int
-> Allows parentheses for grouping expressions
Empty tuple type is Void

Llet x: Void = ()
// X has type Void or ()

-> Allows function type to be (tuple type) -> (tuple type)

/) Custom Operators

/) Custom Operators

Can be formed from a couple of ASCII characters,
and lots of unicode symbols

Let numbers = [/23,]

infix operator € {}
func e(candidate: Int, array: [Int]) -> Bool {
return contains(array, candidate)

3

assert(€ numbers)

/) Custom Operators

Can be formed from a couple of ASCII characters,
and lots of unicode symbols

Let numbers = [/5,]

infix operator € {}
func e<T: Equatable>(candidate: T, array: [T]) -> Bool {
return contains(array, candidate)

3

assert(€ numbers)

Phew! That's quite a lot of new stuff, isn't it?

The One Thing to Remember: Swift Will Be

Swift Is a complete replacement for
both the C and Objective-C
languages.

— Xcode 6 Release Notes

Thanks for listening!

