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Don't want to talk about expected, non-astonishing :)
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Top Surprises in Swift

Seven top surprises from the Ruby perspective
Only surprises in the language
e Won't cover REPL, Playground, command line scripts

e \Won't cover current problems with tools
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1) No Garbage Collection

Automatic Referenc Counting (ARC) instead
References up the reference graph:

e Jo single owning object: unowned

e Otherwise: weak

Less of a problem than you may expect
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2) Constants

Declare variables with var

Declare constants with lLet

var 1
Let J

Default for function parameters: Let

func printTripleOf(i: Int) {
i *= // COMPILER ERROR
println(i)
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Good thing: Swift has type inference

var numbers = [42, 4, 8, : , ]
numbers.sort({ a, b in a < b })



3) Types

Swift is a strongly typed language

var numbers: [Int] = [42, 4, &, : : ]

numbers.sort({ (a: Int, b: Int) -> Bool in
a <p»b

1)

Good thing: Swift has type inference (and more goodies)

var numbers = [42, 4, 8, : , ]
numbers.sort { $0 < $1 3
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4) Optionals

Typical in typed languages (example Java):

int 1; // Value: Cannot be null
Object object; // Reference: Can be null

In Swift, non-optional is default, optional is an own type:

var 1: Int // Value: Cannot be nil
var object: AnyObject // Reference: Cannot be nil
var 12: Int? // Optional value: can be nil

var objectl2: AnyObject? // Optional reference: can be nil



4) Optionals: Advantages

We can make values optional

We can make references non-optional

func indexOfltem(item: Item) -> Int? {
/] ...
b
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5) Focus on Values

Ruby: Objects are referenced
Java: Objects are referenced, but primitive types are values

Swift: Objects are referenced, but primitive types are values,

e and structs are values,

e and enums are values,

e and Array, Dictionary, String are values!
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5) Focus on Values

Advantage: Imagine storing an array of 10,000 3D points
 Ruby/Java: Around 10,002 memory allocations

e Swift: 1 memory allocation
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6) Tuples

Tuples allow easy grouping of values/references

Let result = ( : )
// Type of result is (Int, String)

Allow optional naming of the elements

Let result = (code: , status: )
// Type of result 1s (code: Int, status: String)



6) Tuples: Special Cases

One tuple type is equivalent to the type inside
let x: (Int) = (42) // x has type Int
-> Allows parentheses for grouping expressions
Empty tuple type is Void

Llet x: Void = ()
// X has type Void or ()

-> Allows function type to be (tuple type) -> (tuple type)
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/) Custom Operators

Can be formed from a couple of ASCII characters,
and lots of unicode symbols

Let numbers = [/23, ]

infix operator € {}
func e(candidate: Int, array: [Int]) -> Bool {
return contains(array, candidate)

3

assert( € numbers)



/) Custom Operators

Can be formed from a couple of ASCII characters,
and lots of unicode symbols

Let numbers = [/5, ]

infix operator € {}
func e<T: Equatable>(candidate: T, array: [T]) -> Bool {
return contains(array, candidate)

3

assert( € numbers)



Phew! That's quite a lot of new stuff, isn't it?



The One Thing to Remember: Swift Will Be




Swift Is a complete replacement for
both the C and Objective-C
languages.

— Xcode 6 Release Notes



Thanks for listening!






